
Code Encryption with Intel TME-MK for
Control-Flow Enforcement

Martin Unterguggenberger, Lukas Lamster, Mathias Oberhuber,
Simon Scherer, and Stefan Mangard

Graz University of Technology, Austria

Abstract. Memory safety errors enable an adversary to corrupt code
pointers, diverting the program’s control flow. Recent CPU features,
such as Intel CET/IBT, harden software systems against exploitation
attempts that maliciously redirect control flow operations. While IBT
limits valid indirect branch targets, forward-edge transfers can still be
redirected to any IBT-marked function. Thus, IBT cannot provide fine-
grained protection against forward-edge control-flow attacks.
This paper presents code encryption with Intel TME-MK, a novel ap-
proach for control-flow enforcement against software exploitation on off-
the-shelf x86 machines. We repurpose the Intel TME-MK runtime en-
cryption to achieve function-level code encryption. Encrypted functions
are only accessible through function pointers associated with the correct
key, thereby enforcing fine-grained restrictions for control-flow transfers.
We demonstrate two new encryption-based techniques for software hard-
ening in practice: forward-edge control-flow integrity and library encryp-
tion. We implement a security-hardened toolchain that combines com-
piler instrumentation and a loader extension to ensure the validity of
the program’s execution flow through efficient hardware-backed encryp-
tion. Our prototype shows a geomean performance overhead of 7.8%
for forward-edge control-flow integrity and 2.2% for library encryption
evaluated with the SPEC CPU2017 benchmark suite.

Keywords: Code Encryption · Control-Flow Integrity · Intel TME-MK.

1 Introduction

Coding errors that introduce memory safety bugs into software systems are a
severe threat to platform security [45, 49, 63]. Such memory errors are a main
root cause for enabling critical zero-day exploits [22,25,50]. A malicious actor can
exploit how (non-memory safe) C/C++ software interacts with memory [53,61].
This way, an adversary can overwrite a code pointer, e.g., a function pointer or a
return address, to divert the program’s execution flow. Control-flow redirection
allows for advanced exploitation techniques that are generally classified as code-
reuse attacks. For instance, return-into-libc [59] overwrites a return address to
redirect the control flow to a library function (e.g., system in libc). Furthermore,
ROP [11,54] and COP/JOP [9,15] are powerful attacks that allow for arbitrary
attack flows by chaining existing code gadgets located in executable memory.

2 M. Unterguggenberger et al.

Software-hardening defenses, such as security-enhancing compiler options,
are essential for exploit mitigation throughout the entire low-level software stack.
Security extensions need to harden legacy and future C/C++ codebases while
being constrained to strict system requirements, e.g., minor performance impact
and compatibility with legacy x86 software. To maintain efficiency and compat-
ibility while preventing the exploitation of vulnerabilities, defense mechanisms
must be integrated into the processor and enforced in hardware [38,51,60,66].

CPU features, such as Intel Control-flow Enforcement Technology (CET) [60],
address specific sub-classes of control-flow hijacking attacks. Intel CET provides
a shadow stack feature that ensures the integrity of return addresses. This strong
protection against return address manipulation enables backward-edge control-
flow integrity (CFI) [1, 12, 14]. Moreover, Intel CET introduces the Indirect
Branch Tracking (IBT) feature, which explicitly marks valid destinations for
the program’s execution flow. Thus, forward-edge control-flow transfers, such as
indirect jumps and calls, are exclusively limited to IBT-marked functions, which
are identified via designated landing pad instructions. Any indirect branch to an
unmarked address is interpreted as a control-flow hijacking attempt and causes
an exception. However, IBT can only provide coarse-grained CFI. As all valid
targets are marked using the same landing pad instruction, IBT cannot distin-
guish between multiple valid indirect branch targets. Thus, while IBT makes
exploitation harder, this imprecision still allows an attacker to divert the control
flow to any IBT-marked location anywhere in the program’s code region [14,56].

In this paper, we present a novel approach for control-flow enforcement
through fine-grained code encryption on off-the-shelf x86 machines. We repur-
pose Intel’s encryption technology, Total Memory Encryption Multi-Key (TME-
MK) [27,29], for function-granular code encryption. Intel TME-MK implements
efficient runtime encryption, which is typically used for page-granular encryp-
tion of confidential virtual machines (VM) [28, 30]. Our design builds on top of
the TME-MK feature to encrypt code on a function granularity through the use
of page aliasing, a technique that allows multiple virtual addresses to refer to
the same physical memory. Function-granular code encryption enables two new
toolchain hardening techniques: forward-edge CFI and library encryption.

Code encryption and linking function pointers with encryption keys restrict
access to application or library functions. This approach limits available func-
tions within the program, thereby mitigating control-flow attacks by enforc-
ing fine-grained CFI policies or preventing the code reuse of security-critical li-
brary functions. The forced use of encryption keys for function pointers restricts
control-flow transfers, as incorrect decryption leads to garbled code and, thus,
results in the execution of arbitrary pseudo-random instructions, which likely
causes a fault [33]. Compared to IBT, which limits indirect branches to any
marked function entry, our design restricts the overall set of accessible functions
by leveraging up to 32K encryption keys. Moreover, combining our code encryp-
tion with IBT offers synergies, i.e., confining indirect branches to the function
entry and reducing the set of accessible functions. Also, violations are detected,
as the incorrect decryption of code is unlikely to lead to valid landing pads.

Code Encryption with Intel TME-MK for Control-Flow Enforcement 3

We implement a hardened toolchain consisting of an LLVM [37] extension, a
modified loader, and a kernel patch, enabling control-flow enforcement through
compiler instrumentation with hardware-backed encryption. Moreover, we pro-
vide an in-depth security analysis of our design and a performance evaluation
using SPEC CPU2017 [10]. Our prototype shows practical results with a ge-
omean overhead of 7.8% for forward-edge CFI and 2.2 % for library encryption.
Contributions. In summary, we make the following contributions:

1. We present code encryption with Intel TME-MK, a novel approach that
enforces fine-grained security policies on control-flow transfers by encrypting
functions and linking function pointers to encryption keys.

2. We provide new insights on the application of code encryption: We detail two
software hardening techniques, i.e., forward-edge CFI and library encryption.
In addition, we outline synergies of our encryption approach, resulting in
garbled code, with detection through wrongly decrypted IBT landing pads.

3. We develop a prototype of our security-hardened toolchain and evaluate the
performance, showcasing practical results for SPEC CPU2017.

4. We conduct an in-depth security analysis, highlighting the security properties
and efficacy of our encryption-based design.

Outline. The paper is organized as follows. Section 2 provides the background
of this work. Section 3 defines our threat model. Section 4 presents the design,
and Section 5 describes the implementation of our prototype. Section 6 and
Section 7 provide the security analysis and performance evaluation. Section 8
discusses related and future work. Section 9 concludes this work.

2 Background

This section provides the background on control-flow hijacking attacks, Intel
Control-flow Enforcement Technology (CET), and Intel Total Memory Encryp-
tion Multi-Key (TME-MK).

2.1 Control-Flow Attacks

Software that is developed in non-memory safe programming languages (e.g., C
and C++) is vulnerable to memory safety errors. These memory safety vulner-
abilities, introduced by coding errors, enable a malicious actor to corrupt data
located in memory. Consequently, this also allows an adversary to modify code
pointers (e.g., function pointers or return addresses) through illegitimate mem-
ory interactions. These code pointers are then used by control flow instructions
(e.g., ret, call, or jmp instructions). Hence, the corruption of the target address
allows the redirection of the program’s execution, hijacking the control flow.

In addition, more advanced exploitation techniques, such as return-oriented
programming (ROP) [11, 16], aim to reuse existing code from the executable
memory to achieve arbitrary attack flows. Specifically, ROP attacks chain to-
gether multiple instruction sequences, called ROP gadgets, to achieve arbitrary

4 M. Unterguggenberger et al.

attack flows through the exploitation of return instructions. Note that the return
instruction retrieves the address of the next instruction from the stack and re-
sumes the program execution from that address. By carefully chaining together
these gadgets, also referred to as crafting an ROP chain, and manipulating return
addresses located on the stack, the attacker can execute a sequence of gadgets
to achieve arbitrary code execution flows.

Similarly, call/jmp-oriented programming (COP/JOP) [9,15] reuses existing
code in memory through the redirection of indirect calls and jumps. For in-
stance, these techniques achieve an arbitrary attack flow through the help of a
dispatcher function [9]. Due to their use of gadgets in executable memory, ROP
and COP/JOP attacks are generally classified as so-called code reuse attacks.

2.2 Intel Control-Flow Enforcement Technology

Intel Control-flow Enforcement Technology (CET) [60] is a set of architectural
elements developed to help ensure the integrity of control-flow transfers within a
program. Thereby, the processor is extended with capabilities to enforce control-
flow integrity (CFI) [1,12,14] for both forward-edge and backward-edge transfers.

First, Intel CET provides a hardware-based shadow stack feature that of-
fers strong protection against return address modification, thereby providing
backward-edge CFI. Specifically, the shadow stack organizes and manages a sep-
arate stack that exclusively contains return addresses. On each function call, a
copy of the return address is stored on the shadow stack, thus becoming inac-
cessible to the adversary. When exiting the called function, the return address
is taken from the regular stack. In addition, this (potentially modified) address
is then compared to the return address stored on the shadow stack. A mismatch
during this comparison indicates a corrupted return address and results in an
exception. Thus, return-based code-reuse attacks, e.g., return-into-libc [59] and
ROP [11,54] attacks, are detected and mitigated.

Second, Intel CET provides forward-edge CFI through the integration of
Indirect Branch Tracking (IBT). IBT extends the x86 ISA with landing pad in-
structions (e.g., enbr64). Typically, a compiler inserts landing pads in function
entries to mark valid indirect call/jump targets in executable memory. Since IBT
reduces the potential destinations of indirect branches to valid landing pad in-
structions, it greatly reduces the attack surface for control-flow hijacking attacks
such as COP/JOP [9,15]. However, IBT can only provide coarse-grained CFI. As
all valid function entries are identified using the same landing pad instructions,
an attacker can still divert the control flow to all function entries marked with
IBT within the application or (shared) libraries [56].

2.3 Intel Total Memory Encryption Multi-Key

Intel’s memory encryption technology, Total Memory Encryption (TME) [27],
allows transparent encryption of the system’s entire physical memory with a sin-
gle encryption key. The Total Memory Encryption Multi-Key (TME-MK) [27]
extension provides DRAM encryption with multiple encryption keys, enabling

Code Encryption with Intel TME-MK for Control-Flow Enforcement 5

Core 0 2 0 1 3 2 0 1
TME-MK

Memory Controller

Computer’s
Physical Memory

Cache

Number inside Page
represents KeyID

Phys
ical

Addr
ess

(ca
rrie

s KeyI
D)

Phys
ical

Addr
ess

(KeyI
D opt

ion
al)

Fig. 1: Overview of the Intel TME-MK memory encryption.

the selection of page-granular encryption keys through the processor page ta-
bles [27, 29]. Intel TME-MK is an architectural element mainly used for the
encryption of virtual machines (VMs) and containers, thereby ensuring the con-
fidentiality of DRAM data and helping to counteract physical attacks [26,28].

Figure 1 shows an overview of Intel TME-MK’s memory encryption. TME-
MK operates transparently on memory transactions between the CPU core and
the DRAM memory controller. Writing to memory encrypts the data, and sub-
sequently, reading from memory decrypts the previously encrypted data. TME-
MK organizes its cryptographic key material using a key table that maps the
key identifiers (keyIDs) to their respective encryption keys. To offer more flexi-
bility, TME-MK supports different encryption modes, such as 128-bit and 256-
bit AES-XTS [20, 21, 43, 55] encryption. Additionally, the Intel Trust Domain
Extensions (TDX) [28, 30] add support for authenticated encryption with cryp-
tographic integrity through a message authentication code (MAC).

Memory pages are encrypted depending on the keyID encoded into the upper
part of the physical address of the memory request. Thus, the physical address
carries the keyID to the encryption engine in the memory controller, controlling
the encryption key and mode used for the memory interactions. Note that TME-
MK is specified for up to 215 encryption keys [27]. As the encoding of keyIDs
results in a reduction of addressable physical memory, the size of the keyID is
platform-dependent and varies across processors with TME-MK support.

3 Threat Model

We consider an attacker that intends to exploit a memory safety vulnerability
to corrupt a code pointer (e.g., a function pointer located in memory), hijacking
the control flow of an unprivileged user space program. Thereby, the adversary
exploits a vulnerability in an attempt to modify the program state or behavior
through the redirection of the program’s execution flow. Moreover, we assume
that the attacker knows the address space layout of the target program, i.e., the
attacker knows the addresses of potentially lucrative branch targets.

Intel CET [60] and comparable security features from other CPU vendors
(e.g., AMD Shadow Stack [4] and ARM Guarded Control Stack [5]) are widely

6 M. Unterguggenberger et al.

Blocks of Memory

¤ Function x
¤ Function y
¤ Function z

x x x x y y y y y y z z z z

¤ func_ptr

 Control-Flow Attack

µ

✗ ✗

µ

Fig. 2: High-level concept of the function-granular code encryption.

available. Thus, we assume that the Intel CET shadow stack feature is enabled
and provides us with backward-edge control-flow integrity.

We assume that the privileged operating system/hypervisor is benign and
that writable memory is marked as non-executable (see Write-XOR-Execute).
We consider other attack vectors, such as side-channel attacks [35,41] and fault
injection attacks [34,46,62], to be out of the scope of this work.

4 Design

In this section, we present our novel technique for control-flow enforcement
through code encryption that effectively hardens software against control-flow
hijacking attacks. We repurpose the Intel TME-MK encryption engine, avail-
able on off-the-shelf Intel x86 CPUs, to encrypt individual functions for the
fine-grained restriction of forward-edge control-flow transfers.

4.1 High-Level Overview

At its core, our design encrypts individual functions with designated encryp-
tion keys. Encrypted functions are only available for call sites with a match-
ing key that correctly decrypts the function. When performing an indirect call,
the key associated with the functions pointer is used to decrypt the call tar-
get. Only functions encrypted with the associated key will be decrypted into
meaningful code. Thus, our design enables fine-grained control-flow enforcement
through code encryption. We repurpose the Intel TME-MK hardware feature to
achieve function-granular code encryption on commodity x86 CPUs. Moreover,
our hardened toolchain identifies function pointers and applies compiler-based
code instrumentation to enforce the use of designated encryption keys, depend-
ing on the defined security policy. Note that our generic code encryption scheme
enables a variety of security policies based on the underlying code encryption
mechanism. While this work focuses on a function signature-based policy as a
proof-of-concept, other CFI policies [42,64,67] can also be implemented.

Figure 2 illustrates a high-level overview of the function-granular code en-
cryption employed by our design. In the example, individual 16B memory blocks
of the code section are encrypted with the different encryption keys assigned to
the functions x, y, and z. Moreover, control-flow transfers are instrumented to
enforce the usage of a dedicated encryption key defined by the security policy.
The example shows a function pointer associated with the encryption key of

Code Encryption with Intel TME-MK for Control-Flow Enforcement 7

function x that is dereferenced by an indirect function call. Enforcing the usage
of the encryption key for function x limits the valid call targets to destinations
encrypted with the respective key. This way, any redirection of the control flow
by tampering with the function pointer, e.g., to the functions y or z, leads to a
decryption with a wrong key. Decrypting code with an incorrect key leads to gar-
bled code due to a pseudo-random decryption result, which the attacker cannot
control. Hence, executing instructions of a function encrypted with a different
key is impossible as the attacker can only receive garbled code.

Furthermore, we assume that backward-edge control-flow transfers are pro-
tected by Intel CET’s shadow stack feature. Note that code encryption also syn-
ergizes with the Intel IBT landing pads. Particularly, our encryption approach
results in garbled code that is then detected through IBT, as the incorrect de-
cryption of code is very unlikely to produce a valid landing pad instruction.

4.2 Code Encryption with Intel TME-MK

Our design repurposes the Intel TME-MK feature to efficiently encrypt exe-
cutable code in memory. Intel TME-MK, originally intended for the encryption
of entire virtual machines, enables page-granular encryption of memory. The en-
cryption uses up to 15-bit keyIDs encoded in the physical address field of the page
table entry to select up to 32K encryption keys [27]. All memory transactions
between the CPU core and the main memory (i.e., the DRAM) are transparently
encrypted using the selected key. Our design advances this page-level encryption
and allows the assignment of different encryption keys to individual functions.
Function-Granular Encryption. While TME-MK operates on page granular-
ity, we can achieve function-granular encryption through page aliasing [57,58,65].
Figure 3 illustrates the function-granular code encryption with Intel TME-MK.
Aliasing allows multiple virtual addresses to refer to the same physical mem-
ory and is typically used for shared memory. For every keyID, the program’s
code region is mapped into the virtual address space using a different virtual
base address. However, all mapped regions reference the same physical memory.
Thus, each keyID has a unique alias that maps to the physical memory using the
associated keyID. Note that the alias mappings are chosen so that the code re-
gions do not overlap with each other or with other regions in the virtual address
space. At program startup, each function in the code is encrypted by writing it
to memory using the corresponding alias for the intended keyID. As the setup of
mappings and encryption of individual functions must precede the regular pro-
gram execution, these steps are performed by the loader. After initialization, the
loader sets the permissions of code pages back to read-only and executable. While
the loader ensures that each function is encrypted with the intended keyID, we
must also ensure that the program uses the correct keyID for function calls at
runtime. We achieve this through compiler instrumentation that forces indirect
branches to use the virtual base address of the designated alias mappings and,
thus, the corresponding encryption keys for forward-edge control-flow transfers.

The example given in Figure 3 shows a 4 kB code page containing three
distinct functions: x, y, and z. Memory aliasing creates different views on the

8 M. Unterguggenberger et al.

Computer’s
Physical Memory

Number inside Page
represents KeyID

Virtual Memory

Page Table
Entries

R/X

KeyID 1 PPN

x

R/X

Different Views on Code

KeyID 2 PPN

y

R/X

KeyID 3 PPN

z

1 2 3

Function x Function y Function z

4 kB Physical Page

Fig. 3: Overview of the function-granular code encryption through Intel TME-
MK. Aliasing creates different views on the computer’s physical memory. Here,
three functions, x, y, and z, are located on the same physical page while each
function is encrypted with its respective encryption key (i.e., keyID 1, 2, and
3). The compiler enforces the usage of keyIDs; thus, code can only be executed
through function pointers associated with the correct keyID. This limits control-
flow transfers as access with an incorrect keyID results in garbled code.

program’s code region, i.e., it allows multiple virtual addresses to refer to the
same physical memory location using different keyIDs. The functions x, y, and z
can be accessed through the three mappings with the corresponding keyIDs 1, 2,
and 3, respectively. Thus, function x can only be called when accessed through
keyID 1 since other aliases result in garbled code and crash on execution.

The compiler enforces the usage of a specific keyID associated with the func-
tion pointer, depending on the security policy. Precisely, our design instruments
the virtual addresses of the function pointers to refer to the alias mapping of
the code section associated with their designated keyIDs. Depending on the se-
curity policy, the control-flow enforcement of our mechanism provides toolchain
hardening for forward-edge CFI or library code encryption.

4.3 Control-Flow Enforcement

We leverage our code encryption approach to harden C/C++ software. First,
our design allows the enforcement of fine-grained CFI policies to protect forward-
edge control-flow transfers. Second, our design enables the encryption of library
code that helps to protect against code reuse of security-critical library functions.
Forward-Edge Control-Flow Integrity. Control-flow attacks allow a ma-
licious actor to redirect program execution to different destinations. When an
adversary manages to corrupt the address of a function pointer used by a control-
flow operation, they can divert the control flow to arbitrary code locations.

To counteract this threat, our design confines indirect branches to individual
functions. We achieve this restriction of valid destinations for control-flow trans-

Code Encryption with Intel TME-MK for Control-Flow Enforcement 9

fers by associating keyIDs (that correspond to a specific encryption key) with
function pointers. This limits potential branch targets, as functions can only be
executed through the use of a function pointer with the correct keyID. In gen-
eral, our generic design can enforce a variety of CFI policies, e.g., type-based
CFI [64]. For our proof-of-concept, we derive the CFI policy from the function
signature of the target destination. Therefore, the compiler toolchain identifies
function pointers and derives the keyIDs from their function signature. The map-
ping from function signatures to keyIDs is used to associate function pointers
with encryption keys through compiler instrumentation. Subsequently, the func-
tion signatures and corresponding keyIDs are encoded as metadata into the ELF
binary. The modified loader relies on this metadata and is responsible for creat-
ing the mappings for all available keyIDs of the code region, and encrypting the
functions with the associated encryption keys upon program startup.

Even with Intel IBT, the state-of-the-art for CFI in commodity systems, an
attacker can divert the control flow to any marked function entry. Our code en-
cryption technique provides more fine-grained CFI, as forward-edge control-flow
transfers only result in meaningful code if the target is decrypted with the in-
tended key. Further, forward-edge CFI within libraries can be easily achieved by
statically compiling and linking the application and libraries with our toolchain.
In the case of our proof-of-concept CFI policy, attackers are confined to functions
of the same function signature, i.e., function signature-granular CFI. For other
functions, CFI violations result in garbled code. In such a case, the attacker
would force the program to execute arbitrary pseudo-random instructions that
likely crash the program [33]. We can additionally improve the reliability by
combining our encryption-based approach with IBT. As function entries must
be marked by landing pads, most CFI violations are detected by IBT as the
incorrectly decrypted code is highly unlikely to result in a valid landing pad. Al-
ternatively, our code encryption approach can use Intel TME-MK with integrity
support, detecting incorrect code accesses through a cryptographic MAC.
Library Code Encryption. The redirection of control-flow transfers can also
be misused to call or jump into library functions. Library functions are a wel-
coming exploitation target as they often contain security-critical code, e.g., code
reuse of functions in the C standard library [59].

To help protect against code reuse attacks of library functions, we restrict
control-flow transfers from the application into shared libraries through security
policies. Similar to our CFI scheme discussed above, we instrument the control-
flow operations of the application to use a designated encryption key. Here, the
application’s code is assigned a default encryption key. We allow the selective
hardening of software libraries to restrict access to a subset of functions that
execute security-critical code. Security-critical library functions, such as system
or exec, are encrypted with dedicated encryption keys that differ from the de-
fault key. Thus, invalid paths in the control-flow graph targeting critical library
functions are restricted, as the matching key is required for correct decryption.

Library functions that are invoked via indirect branches are confined as the
corresponding function pointer is associated with an encryption key due to our

10 M. Unterguggenberger et al.

instrumentation. This encryption key defines which functions within the library
can be accessed. Moreover, library calls are also instrumented, enforcing the
usage of the associated encryption key for the library function. Note that shared
libraries also need to be accessible for unprotected programs. Thus, our toolchain
uses dedicated versions of the hardened shared libraries for our code encryption
to maintain compatibility with unprotected programs.

5 Implementation

In the following, we describe the prototype implementation of our toolchain,
which consists of an LLVM extension, a modified loader, and a kernel patch.

5.1 Compiler Extension

We implement our code encryption scheme as an extension to the LLVM [37]
compiler (version 17.0.0). Our prototype integrates a set of compiler passes to
the LLVM optimizer and the x86 backend. The backend passes insert a custom
ELF section for metadata and perform the code instrumentation. Specifically, we
implement a compiler pass that creates a custom ELF section and encodes meta-
data for all functions depending on the used security policy. For forward-edge
CFI, our prototype derives the keyID from the function signature by generating
a truncated hash value of the LLVM IR type information that maps to a ded-
icated keyID. For library encryption, the compiler pass allows the selection of
keyIDs for individual library functions that are considered security critical.

Moreover, we implement a compiler pass that retrieves the keyIDs and instru-
ments the corresponding control-flow instructions, linking them to the correct
alias mappings. To achieve this, we analyze and identify all indirect function calls
and instrument the target address by setting its alias bits associated with the
above-identified keyID; e.g., the corresponding function signature. Concretely,
we implement this by manipulating a specific bit range of the virtual address
according to the keyID, depending on the security policy. For indirect branches,
the function pointer is instrumented through logical operations, i.e., by clear-
ing the bit range and subsequently inserting the keyID into the alias bit range.
This procedure forces the function pointers to use their intended virtual address
alias corresponding to the policies’ designated encryption key. Note that our
compiler framework is fully parameterizable in regard to the bit range of the
virtual address space to achieve compatibility with different memory layouts.
Therefore, our extension offers two compiler options to define the number of
available keyIDs and the bit range of the aliased code mappings. The compiler
pass also needs to correct the target addresses for direct function calls within the
program. As all functions are encrypted with their associated encryption keys
to enforce our CFI policies, direct function calls also need to use the intended
virtual address alias (e.g., keyID derived by the function signature) to decrypt
functions correctly. Therefore, we patch the content of the rip register to use
the intended virtual address to access the function with the correct keyID.

Code Encryption with Intel TME-MK for Control-Flow Enforcement 11

We also implement optimization passes operating on the LLVM IR. We need
to handle statically allocated data that contain a function pointer in their ini-
tializer value, such as function pointers stored in global/static variables. Thus,
we invoke a compiler-generated startup routine that correctly initializes global
data containing function pointers with the correct keyID. In addition, we assign
all static functions a unique function name (being able to differentiate functions
with the same name but different signatures) and handle non-compatible op-
erations like comparisons of function pointers. To optimize the performance of
forward-edge CFI, our compiler toolchain additionally aligns and pads functions
to the cache line size of 64B. This alignment is essential, as accessing an already
cached memory region using a different memory alias forces the hardware to
evict the currently cached version [2]. The LLVM compiler already provides an
interface for this function alignment. In addition, we use the LLVM support for
Intel IBT to insert landing pads for function entries.

For library code encryption, control-flow operations of the program are in-
strumented similarly to the CFI policy. Here, the compiler either enforces the
use of the default encryption key (i.e., keyID 0) or a designated encryption key
associated with a security-critical function. Special care is required for shared
libraries as these function calls are performed through the PLT. We also map the
shared library with all available keyIDs and separately encrypt security-critical
functions according to the security policy. The PLT stub uses the GOT entry
to either call the dynamic linker to resolve the destination, or already contains
the address of the library function. We instrument the PLT stub to enforce the
use of the keyID associated with the defined security policy. This way, security-
critical functions can only be called from their respective PLT entry or function
pointers that are allowed to target this library function.

Note that we use an Intel Xeon Gold 6530 processor as our main development
and evaluation platform. While Intel TME-MK supports up to 15-bit keyIDs, our
processor supports 6-bit keyIDs, resulting in a total of 64 encryption keys. For
our prototype, this means that keyID collisions for some function signatures can
occur, which is a limitation of our evaluation platform. However, our compiler
extension can also be configured in regards to the supported number of keyIDs
of the processor, allowing the use of up to 15-bit keyIDs for future processors.

5.2 ELF Loader

We provide toolchain support for our code encryption scheme with a modified
ELF loader. The loader is responsible for creating alias mappings to the code
section for all available keyIDs (i.e., 6-bit keyIDs on our evaluation platform).
This allows access to the code section through all the associated encryption keys.

Moreover, the loader needs to encrypt individual functions depending on the
used security policy. Therefore, the loader relies on the metadata encoded in
our custom ELF section previously inserted by the compiler. The loader parses
this metadata and encrypts the code of individual functions depending on the
security policy, i.e., by writing the function’s code with the designated keyID
to memory. During this initial setup, we flush cache lines when updating the

12 M. Unterguggenberger et al.

associated keyID to ensure all writes are done with a single active keyID, as
recommended by the TME-MK specification [27]. After code encryption, we
change the page permissions of the code section back to read-only and executable.

In addition, the loader maps the PLT/GOT for every aliased code sec-
tion. This is required since PLT calls are performed through instruction pointer
relative-addressing. For our prototype, the loader also initializes shared libraries
and maps them for all available keyIDs. However, dynamic linker support could
be added to achieve an on-demand mapping and encryption of shared libraries.

5.3 Linux Kernel Patch

Operating system support is necessary to provide a software interface to control
the Intel TME-MK memory encryption. Intel TME-MK repurposes up to 15-bit
of the physical address (starting with the highest order bit available) located in
the PTE to encode the keyID. We use an experimental Linux kernel patch pro-
vided by Intel Labs that allows to assign keyIDs through a syscall interface [31].
Specifically, the kernel patch enables additional arguments for the mprotect
system call to associate a keyID with a specific range of memory pages.

6 Security Analysis

This section analyzes the derived security properties of our encryption-based
design. We assume an adversary that manipulates a code pointer to redirect the
program’s control flow (see Section 3). We further distinguish between control-
flow attacks that target forward-edge and backward-edge control-flow transfers.
For backward-edge control-flow transfers, we assume that the Intel CET shadow
stack efficiently protects the return address. Thus, corrupting the return ad-
dresses becomes infeasible, i.e., the attacker cannot overwrite return addresses
on the shadow stack. Furthermore, the adversary can attempt to gain control
over a function pointer to divert the forward-edge control-flow transfer. Here,
the attacker exploits a memory safety vulnerability to corrupt a function pointer
and hijack the control flow, e.g., a buffer overflow that allows to overwrite and
manipulate the function pointer and function arguments.
Function Pointer. Our generic code encryption design ensures fine-grained
control-flow enforcement by linking function pointers with encryption keys. If
an adversary gains control of a function pointer and manipulates its address to
redirect control flow, the attack surface is confined. The compiler ensures that
function pointers are instrumented to use their designated keyID, restricting
forward-edge control-flow transfers solely to destinations that are permitted by
the defined security policy. Furthermore, keyID forgery is prevented through our
code instrumentation since the correct alias bits are explicitly set depending on
the security policy directly before dereferencing the function pointer.
CFI Policy. Our generic design enables the implementation of different poli-
cies, such as CFI and library encryption. The prototype implements a CFI pol-
icy that derives valid indirect control-flow targets from function signatures. This

Code Encryption with Intel TME-MK for Control-Flow Enforcement 13

signature-based CFI policy associates a designated keyID (mapping to an en-
cryption key) for each function signature. This way, function pointers are lim-
ited to solely target destinations with their intended function signature, i.e.,
signature-granular CFI confining the control flow to matching signatures. Note,
however, that other CFI policies [42, 64, 67] can also be implemented on top of
our code encryption scheme. In theory, our design can take advantage of up to
32K encryption keys, as Intel TME-MK is specified for up to 15-bit keyIDs, rep-
resenting the total number of distinct encrypted functions leveraged by the CFI
policy. Nevertheless, the number of available keyIDs is platform-specific, e.g., our
evaluation platform supports 6-bit keyIDs. This can result in keyID collisions for
some function signatures, which is a limitation of our evaluation platform.
Code Encryption. Our design enforces that program execution receives code
decrypted with the encryption key that corresponds to the used keyID. For
policy violations, this results in the (incorrect) decryption of garbled code and,
subsequently, the execution of arbitrary pseudo-random instructions. Precisely,
the use of the wrong keyID leads to a cache miss and results in the data being
served from DRAM, where the TME-MK encryption engine decrypts the data.
The use of an incorrect keyID causes the first instruction fetch to be decrypted
with the wrong encryption key, executing garbled code and very likely causing
a fault [33]. Moreover, our design uses IBT landing pads to detect control-flow
attacks violating our security policies. It is highly unlikely that garbled code, due
to the incorrect decryption, results in a valid landing pad instruction. Precisely,
the probability that uniformly distributed data exactly matches a specific byte
value is 1

256 . The endbr64 instruction uses a 4B instruction encoding. Thus, the
probability of a decryption with a wrong key resulting in an endbr64 instruction
can be given as (1

256)
4, i.e., 2−32.

Authenticated Encryption. Moreover, our design can also take advantage
of Intel TME-MK with integrity. Intel TDX [17, 28, 30] adds support for cryp-
tographic integrity through authenticated encryption. Here, TME-MK provides
an encryption mode that associates cache lines with a cryptographic MAC. This
cryptographic integrity provides detection when functions are accessed with the
incorrect key. Precisely, Intel TME-MK leverages a 28-bit MAC, resulting in a
probability of 1−2−28 for detecting the violation and throwing an exception [65].

7 Performance Evaluation

In this section, we provide the performance evaluation of our design. We evaluate
and discuss the overhead of our design with the SPEC CPU2017 [10] benchmark
suite compiled with our LLVM extension and -O3 optimization level.
Evaluation Setup. We perform our evaluation on an Intel Xeon Gold 6530
processor with support for the Intel TME-MK memory encryption. The CPU
features 32 cores, where each core has a 32 kB L1I/48 kB L1D cache and a 2MB
L2 cache. All cores share a 160MB L3 last-level cache (LLC). Moreover, our
system configuration uses 512 GB DDR5-4800 DRAM with ECC memory. The
given CPU provides 6-bit keyIDs that are usable for our code encryption scheme.

14 M. Unterguggenberger et al.

508
.na

md_
r

519
.lb

m_r

538
.im

agi
ck_

r

500
.pe

rlb
enc

h_
r

505
.mcf_

r

523
.xa

lan
cbm

k_
r

525
.x2

64_
r

531
.de

eps
jen

g_
r

557
.xz

_r

619
.lb

m_s

638
.im

agi
ck_

s

600
.pe

rlb
enc

h_
s

605
.mcf_

s

623
.xa

lan
cbm

k_
s

625
.x2

64_
s

631
.de

eps
jen

g_
s

657
.xz

_s

Geom
ean

SP
EC

0

10

20

30

40

O
ve

rh
ea

d
[%

]

library encryption forward-edge CFI

Fig. 4: The relative performance overhead of our design for SPEC CPU2017.

SPEC CPU2017 Results. For our evaluation, we benchmark our two security-
hardened configurations and compare them to a baseline configuration, show-
casing the performance overheads. Note that we use the ref input to evaluate
all SPEC CPU2017 benchmarks. Our security-hardened configurations demon-
strate the runtime overhead for forward-edge CFI and library code encryption,
as detailed in Section 4. As our toolchain targets the hardening of C and C++
software, all Fortran benchmarks of SPEC CPU2017 are excluded. Furthermore,
we exclude benchmarks with compatibility issues, e.g., the nab benchmark uses
different function signatures for the forward declaration of external functions.

Figure 4 showcases the relative performance overhead of our design for the
SPEC CPU2017 benchmark suite. We find that library code encryption imposes
a low geomean overhead of 2.2 % for confining forward-edge control-flow trans-
fers targeting security-critical library functions. Furthermore, signature-based
CFI imposes a geomean overhead of 7.8 % for fine-grained control-flow enforce-
ment. The results vary across benchmarks. We find that the overhead mainly
stems from two sources: the compiler instrumentation and the increased trans-
lation lookaside buffer (TLB) pressure caused by page aliasing. For example,
our code encryption scheme imposes the largest performance overhead for the
perlbench benchmark, which performs a higher relative number of function calls
and returns than other benchmarks. In addition, we use the perf tool to further
analyze the underlying causes of the incurred overhead. The results indicate that
the overhead of the library encryption reflects the overhead of our compiler in-
strumentation. Moreover, page aliasing reduces TLB efficiency and increases the
TLB miss rate, resulting in page table walks that increase memory latency. Note
that the additional overhead of the signature-based CFI (compared to library
encryption) strongly correlates with the increase in TLB pressure for all bench-
marks. For instance, we find that the majority of the overhead for perlbench is
due to the increase in the number of TLB misses by an order of magnitude.

8 Discussion

In this section, we compare our design with related work on control-flow enforce-
ment, and discuss limitations and potential future work.

Code Encryption with Intel TME-MK for Control-Flow Enforcement 15

8.1 Related Work

FineIBT [23] provides fine-grained forward-edge CFI using Intel Indirect Branch
Tracking (IBT) with compiler support for logical integrity checks to restrict
valid indirect control-flow targets. Microsoft’s Control Flow Guard (CFG) [8]
enables forward-edge CFI through compiler instrumentation for runtime checks
to validate the destinations of indirect control-flow transfers. In contrast, our
design repurposes Intel TME-MK’s hardware-backed encryption (i.e., correctly
decrypted code) instead of instrumenting logical integrity checks in software.

Code-pointer integrity (CPI) [36] ensures forward-edge CFI by enforcing in-
tegrity for code pointers. CPI identifies sensitive pointers (i.e., code pointers and
pointers that may access code pointers indirectly) through static analysis and
instruments the program to store sensitive pointers and associated metadata at a
protected memory region. The metadata of sensitive pointers is then checked on
pointer dereferences. CPI also provides a safe stack [36] for proven-safe objects.

In addition to CFI measures through logical integrity, CFI techniques based
on cryptographic primitives have also been explored in prior work. For instance,
ARM pointer authentication (PAuth) [51] and CCFI [44] provide CFI measures
through the use of cryptographic message authentication codes (MACs). Also,
PointGuard [19] enables pointer protection through the encryption of pointers.

The overall concept of ARM PAuth is to protect (code and data) pointers
stored in memory from corruption [39, 40]. Therefore, the cryptographic MAC,
so-called pointer authentication code (PAC), of the pointer is generated and en-
coded into the upper bits of the pointer. This PAC ensures the pointer’s integrity
while stored in memory. Moreover, after loading the pointer from memory, the
pointer is authenticated, detecting any potential manipulation (with probabilis-
tic security depending on the size of the MAC [51]). ARM PAuth has been
extensively studied, resulting in the outlining of potential weaknesses [13], e.g.,
PAC reuse [32,39] or PAC forgery [6]. Additionally, the PACMAN [52] vulnera-
bility showcased how to brute-force PAC values through speculative execution.

Intel TME-MK has been used to help protect data in memory, e.g., by enforc-
ing memory safety [57,58] and in-process isolation [65]. In addition, EC-CFI [48]
presents control-flow integrity counteracting fault attacks by combining Intel
TME-MK with the Intel virtualization technology. However, it is important to
clarify that this approach is designed to protect against fault attacks [7]. This
threat model includes a physical attacker that actively induces faults into the
processor, e.g., through laser fault injection [7]. Contrarily, our approach targets
a software attacker that exploits memory safety errors to hijack the control flow.

Other CFI schemes introduce custom hardware extensions for code encryp-
tion to primarily counteract fault attacks [18,24,47,68]. For example, SCFP [68]
offers instruction granular control-flow protection by integrating an additional
pipeline stage into the processor to decrypt the instructions during runtime. This
protects the control flow against logical and physical attacks since the tamper-
ing of instructions leads to incorrect decryption and execution of pseudo-random
instructions. In contrast, our design targets software attackers, while SCFP’s in-
struction granular protection primarily focuses on counteracting fault attacks.

16 M. Unterguggenberger et al.

8.2 Limitations and Future Work

Our code encryption design requires an increased number of TLB entries, as each
encryption key used within a page requires a separate TLB entry. This increases
the TLB pressure, leading to a decrease in performance. Future optimizations
can use 2MB-sized pages to lessen the overhead incurred by TLB pressure.
Moreover, our design does not address fault injection attacks. An adversary
with fault injection capabilities or physical access to the CPU poses a potential
threat; thus, orthogonal countermeasures might be required.

This work implements signature-based CFI as a proof-of-concept; however,
our generic design allows to enforce different security policies on top of the
underlying code encryption mechanism. Future work could explore other CFI
policies [42, 64, 67] to limit control-flow transfers. In addition, the AMD Secure
Memory Encryption (SME) [33] feature enables memory encryption on AMD
machines, leveraging a single encryption key. Recently, AMD also introduced
Secure Memory Encryption Multi-Key (SME-MK) [3, 4], an extension of AMD
SME that supports multiple encryption keys. Future work could explore the
implementation of a comparable code encryption scheme on AMD CPUs.

9 Conclusion

In this paper, we presented code encryption with Intel TME-MK, a novel ap-
proach for fine-grained control-flow enforcement on off-the-shelf x86 machines.
We repurpose the Intel TME-MK hardware feature to encrypt individual func-
tions and to associate control-flow operations with designated encryption keys.
This restricts control-flow transfers solely to destinations that are permitted by
our security policies, i.e., encrypted with their respective encryption key.

This way, we enforce software hardening techniques for forward-edge CFI and
library encryption by securing executable code via TME-MK’s encryption. More
concretely, our generic scheme allows us to efficiently encrypt individual func-
tions through the use of up to 32K encryption keys. Control-flow hijacking leads
to incorrect decryption and, thus, to garbled code, preventing software attacks
that aim to illegitimately divert the program’s execution flow through function
pointer manipulation. This cryptographic restriction of control-flow transfers
also achieves detection through wrongly decrypted IBT landing pads.

We implement a prototype of our security-hardened toolchain, consisting of
an LLVM compiler extension, a modified ELF loader, and a kernel patch. Our
performance evaluation showcases a geomean overhead of 7.8% for forward-edge
CFI and 2.2 % for library encryption using the SPEC CPU2017 benchmark suite.

Acknowledgments. We thank the anonymous reviewers for their valuable feed-
back that improved this work. This project has received funding from the Aus-
trian Research Promotion Agency (FFG) via the AWARE project (FFG grant
number 891092) and the RESIST project (FFG grant number 915106). Addi-
tional funding was provided by a generous gift from Intel.

Code Encryption with Intel TME-MK for Control-Flow Enforcement 17

References

1. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-Flow Integrity. In: CCS
(2005)

2. Aktas, E., Cohen, C., Eads, J., Forshaw, J., Wilhelm, F.: Intel Trust Domain
Extensions (TDX) Security Review. https://services.google.com/fh/files/
misc/intel_tdx_-_full_report_041423.pdf (2023), Accessed: 2024-06-10

3. AMD: 4th Gen AMD EPYC Processor Architecture. https://www.amd.com/
en/products/processors/server/epyc/4th-generation-architecture.html
(2023), Accessed: 2024-05-27

4. AMD: AMD64 Architecture Programmer’s Manual Volume 2: System
Programming. https://www.amd.com/content/dam/amd/en/documents/
processor-tech-docs/programmer-references/24593.pdf (2025), Accessed:
2025-02-26

5. Arm: Arm Architecture Reference Manual for A-profile architecture. https://
developer.arm.com/documentation/ddi0487 (2025), Accessed: 2025-02-26

6. Azad, B., Google Project Zero: Examining Pointer Authentication on
the iPhone XS. https://googleprojectzero.blogspot.com/2019/02/
examining-pointer-authentication-on.html (2019), Accessed: 2024-06-10

7. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s
Apprentice Guide to Fault Attacks. Proceedings of the IEEE 94, 370–382 (2006)

8. Biondo, A., Conti, M., Lain, D.: Back To The Epilogue: Evading Control Flow
Guard via Unaligned Targets. In: NDSS (2018)

9. Bletsch, T.K., Jiang, X., Freeh, V.W., Liang, Z.: Jump-Oriented Programming: A
New Class of Code-Reuse Attack. In: ASIACCS (2011)

10. Bucek, J., Lange, K., von Kistowski, J.: SPEC CPU2017: Next-Generation Com-
pute Benchmark. In: ICPE (2018)

11. Buchanan, E., Roemer, R., Shacham, H., Savage, S.: When Good Instructions Go
Bad: Generalizing Return-Oriented Programming to RISC. In: CCS (2008)

12. Burow, N., Carr, S.A., Nash, J., Larsen, P., Franz, M., Brunthaler, S., Payer, M.:
Control-Flow Integrity: Precision, Security, and Performance. ACM Computing
Surveys 50, 16:1–16:33 (2017)

13. Cai, Z., Zhu, J., Shen, W., Yang, Y., Chang, R., Wang, Y., Li, J., Ren, K.: De-
mystifying Pointer Authentication on Apple M1. In: USENIX Security (2023)

14. Carlini, N., Barresi, A., Payer, M., Wagner, D.A., Gross, T.R.: Control-Flow Bend-
ing: On the Effectiveness of Control-Flow Integrity. In: USENIX Security (2015)

15. Carlini, N., Wagner, D.A.: ROP is Still Dangerous: Breaking Modern Defenses. In:
USENIX Security (2014)

16. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A., Shacham, H., Winandy, M.:
Return-Oriented Programming without Returns. In: CCS (2010)

17. Cheng, P., Ozga, W., Valdez, E., Ahmed, S., Gu, Z., Jamjoom, H., Franke, H.,
Bottomley, J.: Intel TDX Demystified: A Top-Down Approach. ACM Computing
Surveys 56, 238:1–238:33 (2024)

18. de Clercq, R., de Keulenaer, R., Coppens, B., Yang, B., Maene, P., de Bosschere,
K., Preneel, B., de Sutter, B., Verbauwhede, I.: SOFIA: Software and Control Flow
Integrity Architecture. In: DATE (2016)

19. Cowan, C., Beattie, S., Johansen, J., Wagle, P.: PointGuard™: Protecting Pointers
from Buffer Overflow Vulnerabilities. In: USENIX Security (2003)

20. Daemen, J., Rijmen, V.: The Block Cipher Rijndael. In: CARDIS (1998)

https://services.google.com/fh/files/misc/intel_tdx_-_full_report_041423.pdf
https://services.google.com/fh/files/misc/intel_tdx_-_full_report_041423.pdf
https://www.amd.com/en/products/processors/server/epyc/4th-generation-architecture.html
https://www.amd.com/en/products/processors/server/epyc/4th-generation-architecture.html
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://developer.arm.com/documentation/ddi0487
https://developer.arm.com/documentation/ddi0487
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html

18 M. Unterguggenberger et al.

21. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography (2002)

22. Durumeric, Z., Li, F., Kasten, J., Amann, J., Beekman, J., Payer, M., Weaver, N.,
Adrian, D., Paxson, V., Bailey, M., Halderman, J.A.: The Matter of Heartbleed.
In: IMC (2014)

23. Gaidis, A.J., Moreira, J., Sun, K., Milburn, A., Atlidakis, V., Kemerlis, V.P.:
FineIBT: Fine-grain Control-flow Enforcement with Indirect Branch Tracking. In:
RAID (2023)

24. Gousselot, T., Dutertre, J., Potin, O., Rigaud, J.: Code Encryption for Confiden-
tiality and Execution Integrity down to Control Signals. In: HOST (2025)

25. Graham-Cumming, J.: Incident report on memory leak caused
by Cloudflare parser bug. https://blog.cloudflare.com/
incident-report-on-memory-leak-caused-by-cloudflare-parser-bug (2017),
Accessed: 2024-06-10

26. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest We Remember: Cold Boot
Attacks on Encryption Keys. In: USENIX Security (2008)

27. Intel: Intel Architecture Memory Encryption Technologies. https:
//www.intel.com/content/www/us/en/content-details/679154/
intel-architecture-memory-encryption-technologies-specification.html
(2022), Revision 1.4, Accessed: 2023-01-31

28. Intel: Intel Trust Domain Extensions. https://cdrdv2-public.intel.com/
690419/TDX-Whitepaper-February2022.pdf (2022), Accessed: 2024-05-27

29. Intel: Runtime Encryption of Memory with Intel Total Memory Encryption-Multi-
Key (Intel TME-MK). https://www.intel.com/content/www/us/en/developer/
articles/news/runtime-encryption-of-memory-with-intel-tme-mk.html
(2022), Accessed: 2024-05-27,

30. Intel: Architecture Specification: Intel Trust Domain Extensions (Intel
TDX) Module. https://cdrdv2-public.intel.com/733568/tdx-module-1.
0-public-spec-344425005.pdf (2023), Accessed: 2024-05-27

31. Intel Labs: TME-MK-i for Memory Safety. https://github.com/intellabs/
tme-mk-fine-grained-encryption-integrity (2024), Accessed: 2024-05-20

32. Ismail, M., Quach, A., Jelesnianski, C., Jang, Y., Min, C.: Tightly Seal Your Sen-
sitive Pointers with PACTight. In: USENIX Security (2022)

33. Kaplan, D., Powell, J., Woller, T.: AMD Memory Encryption. https:
//www.amd.com/content/dam/amd/en/documents/epyc-business-docs/
white-papers/memory-encryption-white-paper.pdf (2021), Accessed: 2024-05-
27

34. Kim, Y., Daly, R., Kim, J.S., Fallin, C., Lee, J., Lee, D., Wilkerson, C., Lai, K.,
Mutlu, O.: Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors. In: ISCA (2014)

35. Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M.,
Lipp, M., Mangard, S., Prescher, T., Schwarz, M., Yarom, Y.: Spectre Attacks:
Exploiting Speculative Execution. In: S&P (2019)

36. Kuznetsov, V., Szekeres, L., Payer, M., Candea, G., Sekar, R., Song, D.: Code-
Pointer Integrity. In: OSDI (2014)

37. Lattner, C., Adve, V.S.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: CGO (2004)

38. LeMay, M., Rakshit, J., Deutsch, S., Durham, D.M., Ghosh, S., Nori, A., Gaur,
J., Weiler, A., Sultana, S., Grewal, K., Subramoney, S.: Cryptographic Capability
Computing. In: MICRO (2021)

https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug
https://www.intel.com/content/www/us/en/content-details/679154/intel-architecture-memory-encryption-technologies-specification.html
https://www.intel.com/content/www/us/en/content-details/679154/intel-architecture-memory-encryption-technologies-specification.html
https://www.intel.com/content/www/us/en/content-details/679154/intel-architecture-memory-encryption-technologies-specification.html
https://cdrdv2-public.intel.com/690419/TDX-Whitepaper-February2022.pdf
https://cdrdv2-public.intel.com/690419/TDX-Whitepaper-February2022.pdf
https://www.intel.com/content/www/us/en/developer/articles/news/runtime-encryption-of-memory-with-intel-tme-mk.html
https://www.intel.com/content/www/us/en/developer/articles/news/runtime-encryption-of-memory-with-intel-tme-mk.html
https://cdrdv2-public.intel.com/733568/tdx-module-1.0-public-spec-344425005.pdf
https://cdrdv2-public.intel.com/733568/tdx-module-1.0-public-spec-344425005.pdf
https://github.com/intellabs/tme-mk-fine-grained-encryption-integrity
https://github.com/intellabs/tme-mk-fine-grained-encryption-integrity
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf

Code Encryption with Intel TME-MK for Control-Flow Enforcement 19

39. Liljestrand, H., Nyman, T., Gunn, L.J., Ekberg, J., Asokan, N.: PACStack: an
Authenticated Call Stack. In: USENIX Security (2021)

40. Liljestrand, H., Nyman, T., Wang, K., Perez, C.C., Ekberg, J., Asokan, N.: PAC
it up: Towards Pointer Integrity using ARM Pointer Authentication. In: USENIX
Security (2019)

41. Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J.,
Mangard, S., Kocher, P., Genkin, D., Yarom, Y., Hamburg, M.: Meltdown: Reading
Kernel Memory from User Space. In: USENIX Security (2018)

42. Lu, K., Hu, H.: Where Does It Go?: Refining Indirect-Call Targets with Multi-
Layer Type Analysis. In: CCS (2019)

43. Martin, L.: XTS: A Mode of AES for Encrypting Hard Disks. IEEE Security &
Privacy 8, 68–69 (2010)

44. Mashtizadeh, A.J., Bittau, A., Boneh, D., Mazières, D.: CCFI: Cryptographically
Enforced Control Flow Integrity. In: CCS (2015)

45. Miller, M.: Trends, challenges, and strategic shifts in the software vulnerability mit-
igation landscape. https://github.com/Microsoft/MSRC-Security-Research/
blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%
20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%
20vulnerability%20mitigation.pdf (2019), Accessed: 2023-02-26

46. Murdock, K., Oswald, D.F., Garcia, F.D., Bulck, J.V., Gruss, D., Piessens, F.:
Plundervolt: Software-based Fault Injection Attacks against Intel SGX. In: S&P
(2020)

47. Nasahl, P., Mangard, S.: SCRAMBLE-CFI: Mitigating Fault-Induced Control-
Flow Attacks on OpenTitan. In: GLSVLSI (2023)

48. Nasahl, P., Sultana, S., Liljestrand, H., Grewal, K., LeMay, M., Durham, D.M.,
Schrammel, D., Mangard, S.: EC-CFI: Control-Flow Integrity via Code Encryption
Counteracting Fault Attacks. In: HOST (2023)

49. National Security Agency: NSA Cybersecurity Information Sheet: Software
Memory Safety. https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/
0/CSI_SOFTWARE_MEMORY_SAFETY.PDF (2022), Accessed: 2023-02-26

50. Prince, M.: Quantifying the Impact of "Cloudbleed". https://blog.cloudflare.
com/quantifying-the-impact-of-cloudbleed (2017), Accessed: 2024-06-10

51. Qualcomm: Pointer Authentication on ARMv8.3. https://www.qualcomm.com/
content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
(2017), Accessed: 2023-02-26

52. Ravichandran, J., Na, W.T., Lang, J., Yan, M.: PACMAN: Attacking ARM Pointer
Authentication with Speculative Execution. In: ISCA (2022)

53. Rebert, A., Kern, C.: Secure by Design: Google’s Perspective on Memory Safety.
Tech. rep., Google Security Engineering (2024)

54. Roemer, R., Buchanan, E., Shacham, H., Savage, S.: Return-Oriented Program-
ming: Systems, Languages, and Applications. ACM Transactions on Privacy and
Security 15, 2:1–2:34 (2012)

55. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A Block-Cipher Mode of
Operation for Efficient Authenticated Encryption. In: CCS (2001)

56. Röttger, S.: Control-flow Integrity in V8. https://v8.dev/blog/
control-flow-integrity (2023), Accessed: 2024-06-10

57. Schrammel, D., Sultana, S., Grewal, K., LeMay, M., Durham, D.M., Unterguggen-
berger, M., Nasahl, P., Mangard, S.: MEMES: Memory Encryption-Based Memory
Safety on Commodity Hardware. In: SECRYPT (2023)

https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://blog.cloudflare.com/quantifying-the-impact-of-cloudbleed
https://blog.cloudflare.com/quantifying-the-impact-of-cloudbleed
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://v8.dev/blog/control-flow-integrity
https://v8.dev/blog/control-flow-integrity

20 M. Unterguggenberger et al.

58. Schrammel, D., Unterguggenberger, M., Lamster, L., Sultana, S., Grewal, K.,
LeMay, M., Durham, D.M., Mangard, S.: Memory Tagging using Cryptographic
Integrity on Commodity x86 CPUs. In: EuroS&P (2024)

59. Shacham, H.: The Geometry of Innocent Flesh on the Bone: Return-into-libc with-
out Function Calls (on the x86). In: CCS (2007)

60. Shanbhogue, V., Gupta, D., Sahita, R.: Security Analysis of Processor Instruction
Set Architecture for Enforcing Control-Flow Integrity. In: HASP (2019)

61. Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: Eternal War in Memory. In: S&P
(2013)

62. Tang, A., Sethumadhavan, S., Stolfo, S.J.: CLKSCREW: Exposing the Perils of
Security-Oblivious Energy Management. In: USENIX Security (2017)

63. Taylor, A., Whalley, A., Jansens, D., Oskov, N.: An update on Mem-
ory Safety in Chrome. https://security.googleblog.com/2021/09/
an-update-on-memory-safety-in-chrome.html (2021), Accessed: 2023-02-26

64. Tice, C., Roeder, T., Collingbourne, P., Checkoway, S., Erlingsson, Ú., Lozano, L.,
Pike, G.: Enforcing Forward-Edge Control-Flow Integrity in GCC & LLVM. In:
USENIX Security (2014)

65. Unterguggenberger, M., Lamster, L., Schrammel, D., Schwarzl, M., Mangard, S.:
TME-Box: Scalable In-Process Isolation through Intel TME-MK Memory Encryp-
tion. In: NDSS (2025)

66. Unterguggenberger, M., Schrammel, D., Lamster, L., Nasahl, P., Mangard, S.:
Cryptographically Enforced Memory Safety. In: CCS (2023)

67. van der Veen, V., Göktas, E., Contag, M., Pawlowski, A., Chen, X., Rawat, S.,
Bos, H., Holz, T., Athanasopoulos, E., Giuffrida, C.: A Tough Call: Mitigating
Advanced Code-Reuse Attacks at the Binary Level. In: S&P (2016)

68. Werner, M., Unterluggauer, T., Schaffenrath, D., Mangard, S.: Sponge-Based
Control-Flow Protection for IoT Devices. In: EuroS&P (2018)

https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html
https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html

	Code Encryption with Intel TME-MK for Control-Flow Enforcement

