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Abstract
JuiceJacking is an attack in which malicious chargers com-
promise connected mobile devices. Shortly after the attack
was discovered about a decade ago, mobile OSs introduced
user prompts for confirming data connections from a USB
host to a mobile device. Since the introduction of this counter-
measure, no new USB-based attacks with comparable impact
have been found.

In this paper, we present a novel family of USB-based
attacks on mobile devices, CHOICEJACKING, which is the
first to bypass existing JuiceJacking mitigations. We observe
that these mitigations assume that an attacker cannot inject
input events while establishing a data connection. However,
we show that this assumption does not hold in practice. We
present a platform-agnostic attack principle and three concrete
attack techniques for Android and iOS that allow a malicious
charger to autonomously spoof user input to enable its own
data connection. Our evaluation using a custom cheap mali-
cious charger design reveals an alarming state of USB security
on mobile platforms. Despite vendor customizations in USB
stacks, CHOICEJACKING attacks gain access to sensitive user
files (pictures, documents, app data) on all tested devices from
8 vendors including the top 6 by market share. For two ven-
dors, our attacks allow file extraction from locked devices. For
stealthily performing attacks that require an unlocked device,
we use a power line side-channel to detect suitable moments,
i.e., when the user does not notice visual artifacts.

We responsibly disclosed all findings to affected vendors.
All but one (including Google, Samsung, Xiaomi, and Apple)
acknowledged our attacks and are in the process of integrating
mitigations.

1 Introduction

Mobile devices such as smartphones and tablets have grown
into indispensable everyday companions, storing sensitive
user data such as private pictures or documents. Until about a
decade ago, a significant threat to these devices were Juice-
Jacking attacks [16, 19]. These attacks exploit the fact that

mobile phones use a single physical connector for charging
and for data exchange. A malicious party could hide a com-
puter in a charger to stealthily establish a data connection
during charging. Since all USB connections were trusted by
default, the attacker could access arbitrary files stored on the
device or gain code execution without the user’s knowledge.

Mobile platform developers including Google, its Android
partners and Apple quickly recognized the threat posed by
JuiceJacking attacks. As a mitigation, modern versions of
Android and iOS require user consent1 before a data connec-
tion from a computer can be established. However, to date,
no such requirement has been added for USB connections
from a mobile device to peripherals and accessories such
as keyboards or mice. Most USB-based attacks presented
after the introduction of JuiceJacking countermeasures, there-
fore, act as malicious peripherals. Nohl et al. [29] proposed
BadUSB, which reprograms the firmware of USB peripherals,
such as thumb drives, to inject input events. However, as an
input device, the approach requires an additional channel for
extracting data. Meng et al. [23, 24] suggested a malicious
charger that contains a USB-to-HDMI interface for accessing
the screen content of mobile devices. Although this setup
allows data extraction, it can only access the content visible
on screen. Wang et al. [50] hide an audio interface in a ma-
licious charger, but are only able to extract data accessible
through the voice assistant. Some researchers exploit physical
side-channels of cable connections to extract data from charg-
ing devices. However, passive side-channels can only extract
information from events triggered by the user [7, 52], and
active side-channels require detailed prior knowledge about
the victim [12,50]. In summary, none of the attacks published
since the introduction of JuiceJacking mitigations matches the
impact of JuiceJacking attacks. Additionally, none so far ex-
plored the potential of combining characteristics of malicious
USB hosts and malicious USB devices (e.g., peripherals).

In this paper, we present a novel attack family, CHOICE-
JACKING, which has an impact comparable to JuiceJacking

1In this paper, we use the term "consent" to refer exclusively to technical
means that enforce a user’s intent



attacks, but works on modern mobile devices. It introduces
the concept of hybrid USB attacks that combine aspects of
both host-based and device-based attacks on mobile devices.
CHOICEJACKING attacks operate under the same threat model
and attacker goals as JuiceJacking attacks. They leverage mali-
cious chargers to gain file access or code execution on mobile
devices. While we confirm the attack principle on iOS as well,
this paper focuses on CHOICEJACKING attacks for variants
of Android, the most popular mobile platform.

We base our work on a fundamental flaw in the JuiceJack-
ing mitigations implemented in major mobile platforms. The
core idea of these mitigations is to require explicit user con-
firmation before a USB host can establish a data connection.
This user confirmation is implemented by requiring certain
user interface interactions, e.g., confirming a user prompt that
explains what access is exposed. This countermeasure works
under the assumption that a USB host cannot inject input
events to autonomously confirm the user prompt. When con-
sidering the USB protocol in isolation, this is a valid assump-
tion. The protocol dictates that a USB port can only operate
as either a USB host (e.g., a computer) or a USB device (e.g.,
a mouse or keyboard) at a given time. However, from a sys-
tem perspective, this assumption does not hold on mobile
platforms. We identify three concrete attack techniques for
Android and iOS that allow breaking this assumption. All
attack techniques combine aspects of both a malicious USB
host and USB device. They enable the attacker to take control
of the user interface while a USB user confirmation prompt is
shown and to autonomously complete the confirmation.

The most effective attack technique exploits flaws in the
USB-based Android Open Accessory Protocol (AOAP). This
protocol enables an accessory to register as an input device
despite operating as a USB host. It does not require any user
consent. According to the AOAP specification, Android de-
vices are only supposed to accept AOAP messages while in a
special accessory mode that does not allow data connections.
However, we find that modern real-world Android devices
accept certain AOAP messages at all times, allowing injection
of input events while establishing USB data connections. This
allows a malicious charger to trigger the user consent prompt
intended to mitigate JuiceJacking attacks and autonomously
confirm it. In our evaluation, this technique allows gaining
file access on all Android devices.

For our second attack technique, we identify a race condi-
tion in Android’s input subsystem. Android still trusts USB
peripherals by default, so that a malicious charger can act as
an input device without requiring user consent. This allows
a malicious charger to flood the input event queue with key
events as a USB peripheral. When the charger then (through
USB Power Delivery) switches its USB interface to operate as
a USB host and trigger the user consent prompt, the Android
OS is still processing the injected input events. If the attacker
specifically crafts the input events used for flooding the queue,
this technique allows bypassing the user confirmation prompt.

It succeeds on 9 of 10 evaluated Android devices.
In the third attack technique, a malicious charger can act as

a USB peripheral to make the mobile device establish a con-
nection to a Bluetooth input device integrated in the charger.
The charger can then switch its USB interface to operate as a
USB host, which triggers the user consent prompt intended to
mitigate JuiceJacking attacks. However, the malicious charger
can use the connected Bluetooth input device to autonomously
accept the user consent prompt. 10 of 11 evaluated devices
across both Android and iOS are susceptible to this technique.

On most evaluated devices, gaining data access through
CHOICEJACKING attacks requires the victim device to be
unlocked at some point during charging. Once this condi-
tion is met, the attack only takes in the range of milliseconds
on many devices, which is merely a short flickering on the
screen that may remain unnoticed. After this brief flash of
visual artifacts, the attacker has stealthy file access or code
execution on the victim device until the USB connection is re-
moved. For two vendors (Honor and Oppo), CHOICEJACKING
attacks gain MTP file access on locked devices, by exploit-
ing further implementation flaws in USB handling logic. On
devices from Xiaomi, CHOICEJACKING attacks gain ADB
development access (code execution) even if they are not
development-enabled before the attack. For enabling entirely
stealthy CHOICEJACKING attacks, we present a power line
side-channel for detecting suitable attack times, e.g., when
the device screen is unobserved during a phone call.

Contributions. The main contributions of our work are
(1) We uncover fundamental flaws in the JuiceJacking mit-

igations of mobile platforms that render them largely
ineffective on state-of-the-art devices.

(2) We introduce the novel concept of USB attacks on mo-
bile platforms that combine traits of host-based and
device-based attacks. We provide three concrete attack
techniques that instantiate this concept to exploit Juice-
Jacking mitigation flaws and establish PTP, MTP or ADB
connections on Android or iOS without user consent.

(3) We demonstrate the effectiveness of our attacks on 11
current-generation mobile devices from 8 vendors. Addi-
tionally, we present a power line side-channel that allows
attackers to identify suitable moments for CHOICEJACK-
ING attacks.

Disclosure. We reported 16 vendor-specific security issues
to 6 Android vendors, 4 upstream Android vulnerabilities to
Google, and one vulnerability to Apple. All but one vendors
confirmed our findings and are in the process of developing
or rolling out patches. Google and Samsung already assigned
CVEs2. Google plans to fix the upstream design flaws in an
upcoming Android release.

Outline. Section 2 provides background. Section 3 intro-
duces the threat model and principle of CHOICEJACKING
attacks. We present our attack techniques in Section 4. In

2CVE-2024-43085 and CVE-2024-20900, respectively



Section 5, we detail the prototype used for the evaluations
in Section 6. Section 7 presents our power line side-channel
for detecting suitable attack moments. Section 8 discusses
susceptible platforms, existing mitigations and related work,
before Section 9 concludes this paper.

2 Background

This section briefly introduces USB and the Android OS,
which this paper focuses on.

2.1 USB, USB Type-C and USB PD
The Universal Serial Bus (USB) allows connecting a large va-
riety of different hardware peripherals to a computer through
a single connector and low-level communication protocol.
Since its first publication in 1996 [6], the standard has been
widely adopted in all sorts of electronic devices. Fundamen-
tally, USB connections on a logical level are always formed
between a single USB host and a USB device. All communica-
tion is controlled by the USB host. The USB device may only
transmit data to the host after the latter issues a corresponding
request. Usually, the USB host is a computer of some form,
while the USB device is a peripheral such as a mouse or key-
board. Once a physical connection is established, the USB
host queries the USB device for its USB descriptors. These
are data structures that describe the supported functionality
of the device, as well as metadata. This information allows
the host computer to identify the attached peripheral and load
suitable drivers. Originally, the role a communication partner
assumed in a USB connection was hardcoded in the connector
type it featured. Host devices used a USB Type-A connector
that differed in shape from the Type-B connector used on the
device side.

USB Type-C and USB Power Delivery. The Type-C
connector [47] was added to the USB ecosystem to solve
multiple issues with the previous Type-A and Type-B connec-
tor families. It features a dedicated Configuration Channel
(CC) line that communication partners may use to advertise
their port as either Upward Facing Port (UFP; what used to
be a USB device port) or Downward Facing Port (DFP; USB
host) through specific resistor configurations. Additionally,
more complex role arrangements can be negotiated by ex-
changing USB Power Delivery (USB PD) [3] messages over
the CC line. USB PD introduces a distinction between a port’s
power role (source or sink) and its data role (UFP or DFP).
The communication partners advertise their capabilities as
part of an initial PD handshake. On connection establishment,
the DFP (as identified through resistors) always starts out as
the power source and USB host. Later on, both partners can
dynamically request power or data role swaps. For example,
this enables the implementation of USB hubs that either act
as power source or sink depending on whether their power
supply is connected.

Figure 1: USB dialogs displayed by different Android variants

2.2 Android
With a market share of over 71 %3, Android is the dominating
mobile operating system. It is developed in an open-source
fashion in the Android Open Source Project (AOSP) led by
Google. The OS consists of a Linux kernel and a purpose-built
userspace under the Apache 2.0 license. As a result of this
licensing arrangement, device vendors may adapt large parts
of the operating system. Almost all major Android phone
manufacturers try to differentiate their products by shipping
customized Android variants. These customizations have led
to numerous security vulnerabilities in the past [21, 35, 43].

Modern Android devices feature a PD-enabled USB Type-
C port that supports acting as DFP and UFP. When acting as a
DFP, Android supports USB Human Interface Device (HID)
class devices such as USB mice and keyboards. When acting
as a UFP, Android exposes interfaces for exchanging files and
for development access.

USB File Access. File exchange works through the Pic-
ture Transfer Protocol (PTP) for transferring photos and
videos and the Media Transfer Protocol (MTP), an extension
of PTP that enables transferring files of arbitrary formats. For
every single USB connection that wishes to use any of these
protocols, Android requires explicit user consent. Depending
on the protocol and the vendor-specific Android variant, this
works either through confirming a dialog or through changing
a system setting.

USB Development Access. On Android, development ac-
cess is implemented through the Android Debug Bridge

3As of Q1 2024: https://gs.statcounter.com/os-market-share/
mobile/worldwide

https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
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Figure 2: Principle of CHOICEJACKING attacks. ① Victim
device is attached to the malicious charger. ② The charger
establishes an extra input channel. ③ The charger initiates a
data connection. User consent is needed to confirm it. ④ The
charger uses the input channel to spoof user consent.

(ADB) protocol and daemon. It grants the USB host shell
access to the device, which can be used for installing apps, ac-
cessing the file system or executing arbitrary binaries. Using
the ADB development access interface involves a three-staged
setup procedure. As a first step, a hidden development system
settings menu needs to be unlocked. This step is permanent
and only needs to be carried out once, but requires user au-
thentication, e.g., by presenting a valid unlock pin. Through
the now unlocked development settings menu, it is possible
to change configurations that lower the system’s security. For
example, it allows changing the default USB mode, so that the
user consent described above is not needed for every MTP or
PTP connection. As the second step for enabling ADB access,
the user needs to enable USB debugging in the unlocked de-
velopment settings menu. As the third and final step, Android
requires user confirmation through a UI dialog to establish
trust in a specific computer before it can interact with the
ADB interface. When acting as a UFP, Android also supports
platform-specific accessories that use the Android Open Ac-
cessory Protocol (AOAP) [1]. Like standard USB peripherals,
AOAP accessories are trusted by default and may implement
HID functionality. Still, as a major difference to standard USB
peripherals, AOAP accessories act as USB hosts.

3 Threat Model and Attack Principle

In this section, we describe our threat model, which largely
aligns with prior work [19, 44, 50], including the one from
JuiceJacking. Subsequently, we discuss the flawed design of
JuiceJacking mitigations and the principle of our CHOICE-
JACKING attacks that bypass them.

3.1 Threat Model
Our threat model largely aligns with that of JuiceJacking
attacks and various previous USB-based attacks on mobile
devices [19,44,50]. We assume a scenario in which the victim
uses phone charging infrastructure that has been tampered

with by an attacker. Many public spaces offer mobile device
charging possibilities that are anonymously shared between
a large number of people. Examples are phone charging sta-
tions at airports or cafes, rentable power banks at museums,
or USB wall sockets in hotel rooms. In our threat model,
manipulations entail replacing the electronics in the charger
or reprogramming the firmware of existing electronics. The
goal of the attacker is to extract sensitive information from
a mobile device that is connected to the malicious charger.
Since the malicious charger integrates a wireless module (e.g.,
Wifi), the attacker does not need to be physically present for
carrying out CHOICEJACKING attacks. While some CHOICE-
JACKING attacks require an unlocked screen, we alleviate this
constraint through the power line side-channel in Section 7.

CHOICEJACKING attacks are untargeted. An attacker can
place malicious chargers in public places to harm as many
victims as possible. As part of this untargeted setup, all in-
formation needed to carry out the attack is collected from
the device once it is connected to the malicious charger. The
attack will succeed on all susceptible charging devices (i.e.,
running Android or iOS and, for some vendors, unlocked
while charging), and will thereby cause considerable damage
to a large number of people over time. CHOICEJACKING rep-
resents a primitive for obtaining access to users’ private files
stored on the mobile device. These files commonly include
sensitive information such as private pictures, documents or
app data. Through leaking this data, CHOICEJACKING attacks
can have severe consequences for affected invidiuals. Depend-
ing on the device configuration, CHOICEJACKING attacks can
also gain permanent code execution on the mobile device.

3.2 Design Flaws in JuiceJacking Mitigations

We observe that integrating user interaction as a countermea-
sure for JuiceJacking fundamentally conflicts with mobile
platforms’ default trust in USB peripherals. Mobile devices
by default trust accessories and input devices connected to
their USB port. However, at the same time, mobile OS devel-
opers introduced the requirement for explicit user consent for
data connections to USB hosts as a countermeasure against
JuiceJacking. On some Android variants, and also on iOS, a
dialog informs users about the requested data access and of-
fers the possibility to deny the connection. On other Android
variants such as AOSP, the user has to manually change the
USB mode in the system settings to enable data communica-
tion over the connection to the USB host. In all cases, when
working as designed, this mitigation entails that (1) the screen
is unlocked, and (2) some UI interaction is performed that
explicitly confirms the data connection.

Screen Unlock. Before user consent can be expressed
through the user interface, mobile platforms require the screen
to be unlocked. On properly configured systems, unlocking
the screen requires user authentication, for example through
entering an unlock pin or presenting a fingerprint. The re-



quirement to unlock the screen is therefore intended to ensure
that all subsequent actions on the device are carried out by its
legitimate owner. However, in the context of charger-based
attacks, this guarantee does not necessarily hold. Users fre-
quently unlock their device during charging, e.g., to make
phone calls or look up information online. Prior work exploits
this fact in malicious chargers to extract the screen unlock
pin [7], observe web browsing activity [52] or read user in-
put [23] of charging mobile devices. A malicious charger can
also use this opportunity to stealthily act as an input device
and interact with the phone’s UI. This works because mobile
platforms still trust USB peripherals and accessories by de-
fault, as described in Section 2. We conclude that not all UI
interaction carried out while the device is unlocked and con-
nected to a charger is necessarily caused by or known to the
user. This voids the first part of the JuiceJacking mitigations
already on a design level. Further flaws in vendor-specific
Android variants additionally void it on the implementation
level. These allow attacks that entirely bypass the requirement
for the screen to be unlocked prior to USB data access.

UI Interaction. The protection therefore hinges on the
fact that UI interaction is required for activating a data con-
nection to a USB host. This measure is intended to ensure that
the user is aware of potential consequences and consciously
making the choice to enable the data connection. It assumes
that a malicious charger cannot operate as a USB host and
as an input device at the same time. Otherwise, the attacker
could autonomously carry out the user interaction needed to
confirm its own data connection. This assumption is based
on limitations of the USB protocol, which only allows a USB
port to either act as a USB host or a USB peripheral at one
point in time. When considering USB communication in iso-
lation, an attacker would therefore have to decide on one of
these two roles. They could either establish the USB data
connection as a USB host or carry out user interaction as a
USB peripheral. However, we show that when considering
a holistic view on mobile platforms, there are multiple op-
tions for a malicious charger to conceptually hold both these
roles at the same time. This is the basis for CHOICEJACKING
attacks.

3.3 Attack Principle

CHOICEJACKING attacks are the first USB attacks to com-
bine aspects of host-based and device-based attacks. In all
CHOICEJACKING attacks, the attacker compromises mobile
devices through a malicious charger. To hide its malicious in-
tent, the charger initially behaves like a normal phone charger.
Once it detects a suitable moment (e.g., through the power
line side-channel described in Section 7), it mounts an attack.
As a common pattern for all CHOICEJACKING attacks, the
malicious charger issues input events while initiating a data
connection to the victim device as a USB host. Conceptu-
ally, this works by exploiting initial USB access to establish

a second channel to the victim device. This second channel
can subsequently be used for injecting input events while the
primary USB channel operates as a USB host initiating a data
connection. Figure 2 illustrates this principle. It works on all
major mobile platforms.

We present three concrete attack techniques that instantiate
this novel attack principle. While the presented techniques
focus on the Android platform, one of them works on iOS as
well. The first technique uses implementation flaws in the An-
droid Open Accessory Protocol (AOAP) as its (second) input
channel. The second technique exploits a race condition in the
Android input subsystem as its conceptual input channel. The
third technique uses initial USB peripheral access to establish
a BT input device connection as a second input channel. Ad-
ditionally, we present a power line side-channel that allows a
malicious charger to detect suitable attack moments.

Two of our attack techniques require switching USB roles,
which a malicious charger can accomplish through USB
Power Delivery. For determining the most effective CHOICE-
JACKING attack for a specific device, an attacker can use the
device information exposed through USB descriptors and
USB PD Discover Identity messages. As described in Sec-
tion 2.1, a USB device sends its USB device descriptor to
the USB host as part of the initial handshake. Among other
data, the descriptor contains information on the device’s ven-
dor, product, and version, as well as its unique serial number.
This information can also be obtained before the USB hand-
shake, by using the USB PD Discover Identity mechanism.
Alternatively, timing or power side-channel based fingerprint-
ing approaches as presented by Bates et al. [5] and Spolaor
et al. [37] can be used for accurately identifying devices.

3.4 Attack Impact

Through a CHOICEJACKING attack, the malicious charger ei-
ther gains access to the victim device’s PTP/MTP file transfer
interface or its ADB development interface. On Android, both
interfaces permit read/write control over the entirety of the
victim device’s public storage. Gaining MTP file transfer ac-
cess does not pose any special requirements on the victim de-
vice. In other words, virtually all Android devices are affected.
Most intuitively, an attacker can exploit this access to extract
personal data such as pictures, videos, voice recordings, down-
loads or documents. Prior research has also shown that appli-
cations commonly store sensitive app-specific data in public
storage. As a result, access to public storage could in the
past be exploited for e.g., tampering over-the-air updates [20],
gaining code execution in privileged processes [20, 22] or
mounting DoS attacks against apps [22]. On devices that are
development-enabled (see Section 2.2), CHOICEJACKING ad-
ditionally grants a malicious charger shell access to the victim
device. Among others, this allows an attacker to gain persis-
tent code execution. On iOS, CHOICEJACKING attacks gain
access to the victim device’s pictures and videos.



4 Attack Techniques

We identify three concrete attack techniques, T1 through T3,
that exploit the fundamental flaws in JuiceJacking mitigations
described in Section 3. In a novel hybrid form, they combine
aspects of malicious USB hosts and malicious USB devices.
They allow a malicious charger to bypass JuiceJacking mit-
igations for access to either PTP/MTP or ADB. While the
described attack techniques focus on Android, T3 is platform-
agnostic and also works on iOS. As described in Section 3,
the malicious charger can use information obtained from ini-
tial communication to identify the most suitable attack for a
victim device.

4.1 T1: Input Accessory
By sending a particular USB control request, the AOAP pro-
tocol described in Section 2.2 allows a USB host to put an
attached Android device into a special accessory mode. In this
accessory mode, the USB port is no longer available to other
USB interfaces such as MTP. The USB host can then send
subsequent USB control requests to register as a HID device
and inject HID input events. However, we find that all inves-
tigated Android devices violate the AOAP specification by
accepting AOAP HID messages while not in accessory mode.
This means that a USB host can inject input events while ini-
tiating an ADB or MTP connection. A malicious charger can
exploit this implementation flaw to autonomously complete
all user confirmations for these data connections. Usually,
AOAP accessories can only charge the device with 500 mA,
which slows down charging noticeably [1]. For comparison,
modern phone chargers supply at least 2400 mA. To work
around this limitation, the attacker can carry out USB Power
Delivery power negotiation before sending AOAP messages.
The full steps for this attack technique are:

1. The unlocked victim device is connected to the charger.
2. The charger registers a HID input device through AOAP.
3. The malicious charger initiates an MTP or ADB data

connection to trigger the user consent prompt.
4. The user consent prompt is shown on the device.
5. The charger autonomously accepts the user consent

prompt by injecting the suitable HID events.
On some vendor-specific Android variants, further imple-

mentation flaws in AOAP can be exploited for gaining file
access on locked devices. By triggering a fault in AOAP input
event handling, it is possible to stealthily force re-initialization
of the USB interface in MTP mode. Details about these at-
tacks can be found in Section 6.

4.2 T2: Flooding Input Dispatcher
The second attack technique, T2, exploits a race condition in
Android’s input dispatcher for injecting input events while
initiating a USB data connection. Android’s input subsystem

Time

Role
swap

Role
swap

Send input
events

USB host
USB device

Figure 3: Race condition in Android’s input dispatcher. A
malicious charger can inject input events that are dispatched
after its role swap to a USB host.

builds on its Linux counterpart. At the lowest level, Linux
kernel drivers are responsible for interacting with connected
input peripherals (e.g., USB HID devices) to obtain input
events. The InputReader in the InputManagerService An-
droid system service parses these Linux input protocol events
and puts them into a queue for consumption by the input dis-
patcher. This queue acts as a buffer that ensures that input
events are processed in order and are not lost even if the sys-
tem is busy. We note that the Android input subsystem keeps
input events in this queue even if the input device that gen-
erated them is no longer connected. Additionally, Android’s
input dispatcher intentionally serializes key events. It waits for
all previous input events to have been fully processed before
a key event is dispatched4. This means that a single process
that performs overly complex logic in its key event handler
will delay event dispatching for all other processes or global
event handlers. We observe that such key event handlers are
found in system processes or preinstalled applications on all
evaluated Android devices. A malicious charger can exploit
this by starting as a USB peripheral and flooding the event
queue with a specially crafted sequence of key events. It then
switches its USB interface to act as a USB host while the
victim device is still busy dispatching the attacker’s events.
These events therefore accept user prompts for confirming
the data connection to the malicious charger. The technique
is illustrated in Figure 3. The exact steps are:

1. The unlocked device is connected to the charger.
2. At a suitable moment, the charger performs a USB PD

Data Role Swap. The Android device now acts as a USB
host, while the charger is a USB HID device.

3. The charger generates a large number of HID input
events that are known to trigger complex handling logic
and confirm the user prompt. Two options are possible
for arranging events that delay processing (delayers) and
those that confirm the user prompt (confirmers):

(a) Alternating arrangement. By alternating delayers
and confirmers, the user prompt is accepted as soon
as it is shown.

4InputDispatcher: https://android.googlesource.com/
platform/frameworks/native/+/refs/heads/main/services/
inputflinger/dispatcher/InputDispatcher.cpp#2217

https://android.googlesource.com/platform/frameworks/native/+/refs/heads/main/services/inputflinger/dispatcher/InputDispatcher.cpp#2217
https://android.googlesource.com/platform/frameworks/native/+/refs/heads/main/services/inputflinger/dispatcher/InputDispatcher.cpp#2217
https://android.googlesource.com/platform/frameworks/native/+/refs/heads/main/services/inputflinger/dispatcher/InputDispatcher.cpp#2217


(b) Sequential arrangement. Filling the queue purely
with delayers and only adding confirmers at the
end ensures that confirmers do not interfere with
the user interface before the user prompt is shown.

4. The charger performs a USB PD Data Role Swap. It is
now the USB host, the mobile device is the USB device.

5. As the USB host, the charger triggers the user prompt.
6. The input generated previously confirms the user prompt.

4.3 T3: Bluetooth Input Device

In the third attack technique, T3, the malicious charger acts as
a USB peripheral to autonomously pair a Bluetooth (BT) HID
device to the victim device. Modern BT chips have very small
footprints and can be easily fitted into maliciously modified
chargers. The malicious charger can use this BT input device
to confirm the data connection initiated by switching its USB
interface into USB host mode. For pairing the BT input device
to the victim device, the charger injects events for (1) making
the device discoverable, and (2) confirming the pairing dialog.
On Android, making a device discoverable simply requires
opening the BT pairing screen in the system settings. The
full steps for this attack technique through a PD-capable and
BT-capable malicious charger are therefore:

1. The victim device is connected to the malicious charger.
The device has its screen unlocked.

2. At a suitable moment, the charger performs a USB PD
Data Role (DR) Swap. The mobile device now acts as a
USB host, the charger acts as a USB input device.

3. The charger generates input to ensure that BT is enabled.
4. The charger navigates to the BT pairing screen in the

system settings to make the mobile device discoverable.
5. The charger starts advertising as a BT input device.
6. By constantly scanning for newly discoverable Bluetooth

devices, the charger identifies the BT device address of
the mobile device and initiates pairing.

7. Through the USB input device, the charger accepts the
Yes/No pairing dialog appearing on the mobile device.
The Bluetooth input device is now connected.

8. The charger sends another USB PD DR Swap. It is now
the USB host, and the mobile device is the USB device.

9. As the USB host, the charger initiates a data connection.
10. Through the Bluetooth input device, the charger confirms

its own data connection on the mobile device.

5 Proof-Of-Concept Implementation

CHOICEJACKING attacks are mounted from a malicious
phone charger. Since we consider reverse-engineering and
modifying existing commercial charger products out of scope
for this work, we simulate such an environment using a cus-
tom printed circuit board (PCB) and a Raspberry Pi single-
board computer (SBC). The PCB operates the hardware-level

components needed for the attacks, while the Raspberry Pi
SBC runs the attack logic and controls the PCB. The interac-
tion between the components is shown in Figure 4.

Custom PCB. Attack techniques T2 and T3 described in
Section 4 require a malicious charger capable of (1) operating
as both USB device and USB host, (2) providing power to the
attached mobile device in both modes, and (3) switching the
USB data role of both the charger and mobile device. Tech-
nique T1 only requires the charger to send AOAP messages
as a USB host. It is worth noting that T1, therefore, can be
carried out from any commodity hardware that supports USB
host mode (e.g., off-the-shelf computers or MCUs). To fulfill
the requirement for all attack techniques, we designed a cus-
tom PCB around the Raspberry Pi RP2040 microcontroller
unit (MCU). During operation, the PCB is connected to the
USB PD power supply, the mobile device, and the Raspberry
Pi SBC. The MCU controls all components on the board. The
chip’s native USB interface implements a USB HID keyboard
and mouse, while a second bit-banged USB port allows serial
communication to the external Raspberry Pi SBC. The PCB
also contains a USB Power Delivery controller that acts as
a DFP to the mobile device. A USB multiplexer connects
the mobile device’s USB data lines to either the MCU or the
Raspberry Pi SBC.

Raspberry Pi. The Raspberry Pi 4 SBC in our implemen-
tation serves three purposes. First, it communicates with the
MCU on the PCB to control its hardware-level functionality.
Second, it acts as the USB host that establishes the data con-
nection to the mobile device. Third, it operates as a Bluetooth
HID device required for attack technique T3.

Attack Costs. Overall, the cost of our prototype is less
than 100 USD. This means CHOICEJACKING attacks can be
mounted even by unsophisticated attackers. Although larger
in physical dimensions than an off-the-shelf charger, the proto-
type can be hidden behind a wall, e.g., behind the enclosure of
a charging station. Alternatively, the electronics on our PCB
can further be miniaturized so that they even fit into the USB-
C connector. This allows to form a malicious charger simply
by attaching a malicious cable to an otherwise benign USB-C
socket. A similar miniaturization has been accomplished in
commercial products for BadUSB attacks5.

6 Evaluation

Using the implementation described in Section 5, we evaluate
the susceptibility of mobile devices from the most popular
vendors to CHOICEJACKING attacks. While we focus our
evaluation on different Android devices, we also include a
device running iOS, the other major mobile platform. Since
every Android manufacturer ships a customized OS variant,
different Android devices are affected in different ways by our
attacks. This section demonstrates that despite the diversity of

5O.MG Cable: https://shop.hak5.org/products/omg-cable

https://shop.hak5.org/products/omg-cable
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Figure 4: Our simulated malicious charger. Bidirectional USB
lines represent the possibility for data role swaps.

tested devices, all are vulnerable to CHOICEJACKING attacks.

Our selection of test devices is shown in Table 1. It includes
a recent device from each of the 5 Android vendors with the
highest worldwide market share as of May 2024 as reported
by Statcounter [38]. These are Samsung, Xiaomi, Oppo, Vivo
and Huawei. We additionally extend our evaluation to a recent
device from Apple, the leader in mobile device market share.
For Samsung, the leading Android manufacturer, we select 4
devices to include a range from low-end to high-end devices
of one manufacturer. We also select a recent Pixel phone from
Google, as these run a largely unmodified AOSP build. Finally,
we also select a device from Honor to represent the long tail of
smaller device manufacturers. For all of the covered devices,
we evaluate on a recent available OS release (either Android
12, 13, or 14, and iOS 17).

For every device, we evaluate all attack combinations, i.e.,
using any of attack techniques T1 to T3 from Section 4 to
gain MTP or ADB access. Since PTP is a strict subset of MTP,
it was not evaluated separately for devices that support both.

We provide timings for the fastest attack technique per An-
droid device and target protocol (ADB, MTP) in Figure 5.
For all attacks, we measure the duration in which the mali-
cious charger visibly interacts with the user interface of the
victim device. This entails triggering UI changes e.g., through
injected input events or through USB state changes. We mea-
sure timings by counting frames in video recordings taken at
30 frames per second and full HD resolution. In the follow-
ing, we evaluate concrete CHOICEJACKING attacks for each
individual mobile device vendor.

6.1 Samsung
Samsung’s OneUI Android variant by default acts as an MTP
device when connected to a USB host. However, actual de-
vice storage contents only become visible once the user has
confirmed a prompt displayed on the device following the
MTP handshake from the host. The prompt can be confirmed
by jointly pressing both hardware volume keys.

T1. Attack technique T1 succeeds on all Samsung devices
to autonomously confirm Samsung’s proprietary MTP prompt
while the screen in unlocked. The attack takes 167 ms on the
Galaxy A14, 133 ms on the Galaxy S20 FE, 267 ms on the
Galaxy A33 and 300 ms on the Galaxy S23. For development-
enabled devices, the ADB trust prompt can also be overcome
via technique T1 within 233 ms, 200 ms, 233 ms and 267 ms
on the Galaxy A14, S20 FE, A33 and S23, respectively.

T2. Attack technique T2 allows bypassing the MTP
prompt. On Android 13 and earlier, volume key events de-
lay the processing of subsequent input events and accept the
user prompt. As a result, CHOICEJACKING attacks can ac-
cept the MTP user prompt on the Galaxy A14 and S20 FE
even before it becomes visible. Using T2 for gaining MTP
access takes 17.5 s on average over the 4 Samsung devices.
On development-enabled Galaxy A14, S20 FE and A33 de-
vices, T2 also allows confirming the ADB trust prompt in less
than 11 s. We could not find a suitable delayer sequence for
the ADB trust prompt on the Galaxy S23.

T3. Technique T3 gains MTP access on an unlocked or
ADB access on an unlocked, development-enabled Samsung
device within 24.3 s and 25.3 s on average, respectively.

Takeaway: All Samsung devices in our test set are sus-
ceptible to CHOICEJACKING attacks for file access and
code execution in under 0.3 s.

6.2 Xiaomi
Xiaomi’s MIUI Android variant displays a proprietary dialog
for selecting the USB mode for all connections to a USB host
longer than a second. Xiaomi also heavily modified the devel-
oper settings on their OS variant. Enabling USB debugging
effectively lowers an Android device’s security, as explained
in Section 2.2. To ensure that the user is consciously making
the choice to enable USB debugging, its activation normally
requires user authentication. However, Xiaomi entirely re-
moved the authentication step from this procedure in their
Android variant. Enabling the developer settings menu simply
requires repeatedly tapping on the build version field in the
system settings. Once enabled, the developer settings menu
can already be used e.g., to change the default USB mode.
For further activating USB debugging (ADB), the user needs
to wait 10 s and accept a warning prompt.

T1. On the Xiaomi 12, attack technique T1 allows bypass-
ing the USB mode selection dialog while the screen is un-



Vendor Device OS USB PD Exploitable Attack Techniques
T1 Targets T2 Targets T3 Targets

Samsung Galaxy A14 Android 13 (OneUI 5) Yes MTP, ADB MTP, ADB MTP, ADB
Samsung Galaxy S20 FE Android 13 (OneUI 5) Yes MTP, ADB MTP, ADB MTP, ADB
Samsung Galaxy A33 Android 14 (OneUI 6) Yes MTP, ADB MTP, ADB MTP, ADB
Samsung Galaxy S23 Android 14 (OneUI 6) Yes MTP, ADB MTP MTP, ADB
Xiaomi 12 Android 13 (MIUI 14) Yes MTP, ADBa MTP, ADBa MTP, ADBa

Vivo Y36 Android 13 (Funtouch OS 13) Yes (No DR swap) MTP, ADB - -
Oppo A58 Android 13 (ColorOS 13) Yes MTPb, ADB MTP MTP
Huawei nova 12i Android 12 (EMUI 14) Yes MTP, ADB MTP, ADB MTP, ADB
Honor 90 Lite Android 13 (MagicOS 7.1) Yes MTPb, ADB MTP MTP
Google Pixel 7a Android 14 Yes MTP, ADB ADB MTP, ADB
Apple iPad Pro 2022 iOS 17.4.1 (iPadOS 17.4.1) Yes - - PTP
a ADB access can be gained even if the device is not development-enabled before the attack b Attack works on locked devices

Table 1: Tested devices and their susceptibility to CHOICEJACKING attacks based on our 3 different attack techniques.

locked to access MTP functionality. The attack takes 967 ms.
If the device is development-enabled (USB debugging is ac-
tivated), the same technique can also be used for confirming
the ADB trust prompt in 933 ms. It is worth noting that attack
technique T1 can also be used for gaining ADB access on
an unlocked Xiaomi device that is not development-enabled.
This works by using the AOAP input device to carry out the
UI interaction for enabling development settings and USB
debugging, before confirming the ADB trust dialog. Overall,
this attack takes 36 s on the Xiaomi 12. The attack on a non-
development-enabled device is comparatively slow, because
it involves additional menu navigation and idle time caused
by the warning prompt delay described above.

T2. Attack technique T2 is successful at gaining MTP
or ADB access on an unlocked device. For MTP on an un-
locked device, the attack takes 13 s and uses volume key
events as delayers in a sequential arrangement. For ADB on a
development-enabled and non-development-enabled device,
the attack takes 27 s and 67 s, respectively. The difference in
these timings can again be attributed to the additional steps
needed on non-development-enabled devices.

T3. Attack technique T3 allows obtaining MTP or ADB
access on an unlocked device. Reaching MTP access on an
unlocked device takes 29 s. ADB access can also be reached
on a development-enabled or non-development-enabled de-
vice within 23 s and 55 s, respectively. The attack on the non-
development-enabled device is slowed down by the additional
steps described above.

Takeaway: On the evaluated Xiaomi device, CHOICE-
JACKING gains file access or code execution in under
1 s. Due to Xiaomi’s OS customizations, CHOICEJACK-
ING attacks can gain code execution on unlocked non-
development-enabled devices.

6.3 Vivo

Vivo’s Funtouch OS Android variant does not display a user
prompt for USB mode selection. Instead, the user can change
USB mode by tapping on a particular system notification.
Since this notification is always shown above all other no-
tifications, it can be reliably selected and opened through
keyboard inputs. It is worth noting that the entry-level Vivo
Y36 device in our test set does not support data role switches
through USB PD.

T1. Attack technique T1 on the Vivo Y36 allows to
open the USB mode settings and enable MTP mode. This
attack takes 1267 ms. T1 can also gain ADB access on a
development-enabled device within 367 ms.

T2 & T3. As the tested Vivo device only partially supports
USB PD, it is not susceptible to attack techniques T2 and T3.

Takeaway: CHOICEJACKING attacks on the evaluated
Vivo device gain file access or code execution in under
1.3 s.

6.4 Oppo

Oppo’s ColorOS displays a user prompt for selecting the USB
mode. The prompt is triggered by the USB host querying
the device’s USB descriptors immediately following USB
cable attachment. It is worth noting that ColorOS disables
USB debugging on every USB disconnect or PD data role
swap. The attack cannot re-enable USB debugging, because
the system settings UI does not accept keyboard input for
the corresponding UI switch. Mouse input cannot be used
because the screen position of the switch depends on the
device configuration and screen orientation and is, therefore,
impossible to predict.

T1. Attack technique T1 succeeds in gaining MTP ac-



cess on the Oppo A58 both while the screen is locked and
unlocked. On an unlocked screen, AOAP HID events are in-
jected to autonomously select MTP in the USB mode user
prompt within 667 ms. Gaining MTP access while the screen
is locked can be accomplished by injecting an input event
immediately after registering the HID device through AOAP.
Because the OS takes some time to set up the registered HID
device for use, an error in the AOAP implementation is raised.
As part of error handling, the Android Auto service on the
device (part of the AOAP implementation) interferes with
Oppo’s USB stack, resulting in MTP mode being enabled
after about 35 s. Technique T1 also gains ADB access on
unlocked development-enabled devices within 2233 ms.

T2. Attack technique T2 can be exploited to bypass the
USB mode user prompt for gaining MTP access on an un-
locked Oppo device. The attack navigates to the launcher
by injecting a home key press and uses the key event han-
dler in the launcher application as a delayer in an alternating
arrangement. Overall, the attack takes 14 s.

T3. Attack technique T3 allows access to MTP on the
Oppo A58 within 27 s. Due to USB debugging being disabled
automatically, we failed to exploit T2 and T3 for ADB access.

Takeaway: CHOICEJACKING attacks gain file access and
code execution on the evaluated Oppo device in under
2.3 s. A bug in the implementation of accessory mode
allows extracting files while the screen is locked.

6.5 Huawei

Huawei’s EMUI Android variant displays a proprietary USB
mode dialog for connections to a USB host that last longer
than 2 seconds. The dialog is triggered by querying the de-
vice’s USB descriptors. Among others, it offers the possibility
to enable MTP access. It is worth noting that EMUI is not
a licensed Android variant, so it does not undergo Google’s
rigourous compatibility testing. As a result, the OS’s acces-
sory mode is not fully compliant with Google’s specification.

T1. Despite Huawei’s AOAP implementation not being
fully specification-compliant, EMUI accepts AOAP HID mes-
sages when not in accessory mode. As a result, the Huawei
nova 12i is susceptible to CHOICEJACKING attacks for gain-
ing MTP access while the screen is unlocked. This attack
takes 200 ms to complete. Attack technique T1 can also be
used for autonomously accepting the ADB trust dialog on a
development-enabled device in 1933 ms.

T2. This technique gains MTP access on an unlocked
device and ADB access on an unlocked development-enabled
device. These attacks take 20 s and 23 s for MTP and ADB,
respectively. Volume key events are used as delayers in a
sequential arrangement for MTP and a hybrid one for ADB.

T3. Via a Bluetooth HID connection, MTP and ADB ac-
cess can be gained in 25 s and 27 s, respectively.

Takeaway: The Huawei device is susceptible to CHOICE-
JACKING attacks that gain file access and code execution
in under 1.9 s.

6.6 Honor
In its MagicOS Android variant, Honor implemented a propri-
etary user prompt for choosing the USB mode. The prompt is
triggered by querying the USB descriptors immediately fol-
lowing connection establishment as a USB device. Although
the Android device presents as an MTP device to the host im-
mediately, the actual storage contents are only exposed once
the user selects MTP in this USB mode prompt. Like Oppo’s
ColorOS, we observe that MagicOS automatically disables
USB debugging after USB disconnects or PD data role swaps.
Due to the same limitations in the system settings UI, it also
cannot be re-enabled as part of the attack.

T1. The Android Open Accessory Protocol (AOAP) can
be exploited to reach MTP access on the Honor 90 Lite inde-
pendent of the screen lock state. While the screen is unlocked,
the injected AOAP HID events select MTP in the displayed
USB mode prompt. The attack completes in 367 ms. If the
screen is locked, the same implementation flaw as found on
the Oppo device can be exploited. It takes about 30 s for MTP
access to be granted. Technique T1 also gains ADB access on
an unlocked development-enabled device within 1400 ms.

T2. Attack technique T2 can be exploited to bypass the
USB mode user prompt to gain MTP access. Our attack uses
the Google assistant shortcut as a delayer in an alternating
arrangement. The attack briefly interrupts the device’s power
supply to trigger the USB mode dialog after the USB PD data
role swap. Overall, the attack takes 28 s.

T3. Technique T3 allows gaining MTP file access. The
Bluetooth pairing screen can be reached through the search
bar in Honor’s app launcher. Due to the USB debugging op-
tion being reset automatically, T2 and T3 cannot be exploited
for ADB access.

Takeaway: The evaluated Honor device is susceptible
to CHOICEJACKING attacks for file access and code ex-
ecution within 1.4 s. A bug in the implementation of ac-
cessory mode allows extracting files while the screen is
locked.

6.7 Google
Devices by manufacturer Google run unmodified AOSP An-
droid. As a result, these devices do not display a user prompt
when a connection to a USB host is established. To activate
MTP mode, the user needs to open the USB mode selection
screen either through the system settings or through a system
notification and select the corresponding option. In contrast
to Vivo’s customized OS, AOSP does not permit keyboard
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Figure 5: Timings for CHOICEJACKING attacks on Android devices. In the best case, MTP file access is gained in 133 ms.

input to reliably select the notification if other notifications
are shown as well, because their order cannot be predicted.

T1. The Pixel 7a is susceptible to input events injected
through AOAP for autonomously activating MTP within
1333 ms. Since the exact position of the USB mode system
notification among other notifications (e.g., from emails) is
unpredictable, the attack launches the USB mode selection
screen through the system settings. Technique T1 can also be
used for confirming the ADB trust dialog within 233 ms.

T2. The race condition in Android’s InputDispatcher
can be exploited for gaining ADB access on a development-
enabled device within 10 s. Our attack opens the preinstalled
calculator app using a global key shortcut, then uses number
key presses as delayers in an alternating arrangement.

T3. Attack technique T3 gains MTP access on an unlocked
device and ADB access on an unlocked development-enabled
device. Both attacks take 19 s.

Takeaway: On the Google Pixel 7a, CHOICEJACKING
attacks can extract files or gain code execution in 1.3 s.

6.8 Apple
When attached to a USB host, iOS exposes a PTP inter-
face, which allows exchanging photos and videos. Initiating a
PTP connection displays a user prompt on the mobile device,
which must be confirmed before the host can access any pho-
tos or videos. The BT pairing screen can be reached through
system-wide Spotlight search. In addition to supporting PTP
data connections to a computer, iOS devices can also expose
a development interface through USB. However, establishing
trust in a computer requires user authentication even if the
device is already development-enabled. As a result of requir-
ing user authentication for establishing trust in a computer,
CHOICEJACKING attacks cannot access the development in-
terface on iOS.

T3. As attack techniques T1 and T2 are specific to Android,
we restrict our evaluation to T3. It successfully gains PTP
access on an unlocked device within 23 s.

Takeaway: On the iPad Pro 2022, CHOICEJACKING at-
tacks can extract photos and videos within 23 s.

6.9 Summary of Results

Our evaluation highlights the scope of CHOICEJACKING at-
tacks. All tested devices across platforms and manufacturers
are susceptible. On devices from Oppo and Honor (18 % of
all tested devices), it is possible to exploit a flaw in the ac-
cessory mode implementation to gain file access on locked
devices. On all Android devices, our attacks can gain MTP
file access in under 1.4 s, for a median of 333 ms over all
evaluated Android devices. Code execution through ADB on
all unlocked development-enabled Android devices can be
reached in less than 1.3 s, for a median of 316 ms. On devices
from Xiaomi, it is possible to gain code execution through
ADB on an unlocked but non-development-enabled device.

Attack technique T1 proved best in terms of susceptible
devices and attack speed. It succeeds on all evaluated Android
devices. In the best case (Samsung Galaxy S20 FE), it only
takes 133 ms, which is less than half the duration of a human
blink [17]. At this speed, the attack only leaves a short flick-
ering on the screen that may remain unnoticed. The median
attack duration for T1 was 334 ms. Technique T3 exhibits
the same success rate across platforms (91 %), but performs
slower at a median of 24.5 s. This increase in duration can be
attributed to the BT pairing process. At a median duration of
13 s, technique T2 only succeeded on 8 devices for MTP and
6 devices for ADB access. 9 devices (81 %) from 6 manufac-
turers (75 %) are susceptible to all 3 attack techniques for at
least some protocol.

The results for the 4 Samsung devices indicate that attacks
based on T1 work almost unchanged for different devices
from the same vendor. Although the devices cover a range
from low-end to high-end and span two major OS versions, the
identical attack sequence works on all of them. This finding
indicates that an attacker can target many different device
models through a small number of different attack sequences.
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Figure 6: Power trace for phone call cycle on Xiaomi 12

7 Power Line Side-Channel

This section presents a power line side-channel (PLSC) for
detecting a suitable moment to perform CHOICEJACKING
attacks, i.e., when the victim device is left unobserved.

The PLSC exploits the fact that any operation carried out
on a mobile device creates unique fluctuations in its power
consumption. A malicious charger that measures the charging
device’s power consumption can, therefore, learn details about
its activity (e.g., user interactions). Prior work has demon-
strated that PLSCs reveal various information, e.g., button-
accurate screen tap locations [7] or web browsing activity [52].
The work by Cronin et al. [7] is particularly relevant for our
PLSC since it infers touch locations from current fluctuations
caused by screen content changes as part of visual feedback.
Their findings already show that such PLSCs exist on a wide
range of mobile devices and are invariant to the battery charg-
ing level and various device configurations such as screen
brightness. Screen content changes not only indicate user
interaction but also allow learning about the user’s focus of
attention. Therefore, such measurements are a basis for de-
tecting suitable moments for CHOICEJACKING attacks.

7.1 Desired Detection Scenario
For operating stealthily, an attacker is interested in moments
when a user does not notice the UI state changes incurred
by CHOICEJACKING attacks on an unlocked device. We ob-
serve that there are scenarios in which mobile devices are
unlocked, yet the user is unable to observe the screen (see
Section 8.1). Phone calls are particularly illustrative examples
of such scenarios, so we use them for our proof-of-concept
PLSC. During phone conversations, users typically hold their
mobile device close to their face, so they can communicate
through the integrated microphone and speaker. To conserve
energy and prevent unintended touch events, most devices
include proximity sensors that detect these events and turn
off the screen. Crucially, while the screen is turned off, we
notice that external input devices can still fully interact with
the UI in this scenario. Furthermore, mobile phone calls usu-
ally take about two orders of magnitude longer than the 1.4
seconds CHOICEJACKING attacks need at worst for gaining

file access [31]. We therefore aim for a PLSC that detects
when the screen is turned off during a phone call. We extend
the findings of previous works [7, 52] and show that a PLSC
can be used to detect this scenario.

7.2 Power Trace Analysis
As an initial indication for the existence of a suitable PLSC,
we collect power traces using the malicious charger prototype
described in Section 5. We base our experiments on the Xi-
aomi 12 from the test set described in Section 6, expecting
similar results for other phones (as per prior work [7,52]). The
Xiaomi 12 was chosen because of the possibility for CHOICE-
JACKING attacks to gain code execution on non-development-
enabled devices. This represents the maximum attack gain
among all evaluated CHOICEJACKING attacks, yet it requires
the device to be unattended for the longest time (36 s for tech-
nique T1). In line with prior work [7, 52], we deduce power
from measuring current. The power trace collected at 1 kHz
from the Xiaomi 12 is shown in Figure 6, illustrating the
device’s power consumption before, during and after a call.
① and ② show the consumption in the locked and unlocked
states respectively before the call, while ⑤ and ④ show the
consumption after the call. In the transition from ② and ③, the
power traces indicate the possibility to distinguish the start
of the call from other events, such as screen lock and unlock.
During the call in ③, we repeatedly turned the screen off and
on by triggering the device’s proximity sensor. These events
can be observed as visually distinguishable fluctuations in
current draw between 600 mA and 400 mA in ③.

7.3 PLSC Evaluation
We implement and evaluate a neural network for automati-
cally detecting the desired scenario from a malicious charger.
This entails (1) detecting phone calls, i.e., call start and end
events, as well as (2) screen on and off events. To demon-
strate that the approach by Cronin et al. [7] can be adapted
for detecting calls, we construct a similar one-dimensional
convolutional neural network (CNN) classifier. The model
distinguishes call start and end events from other events that
commonly occur during mobile device usage. We consider
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16 other common events (e.g., web browsing, doing calcula-
tions, messaging, ...). For training the model, we collected
20 power traces for each of the 18 events of 5 seconds each
(360 traces total). Evaluating the resulting model on a test
set of 10 fresh traces per event (180 traces total) yields an
accuracy of 92.78 %. The resulting confusion matrix can be
found in Figure 7. While our model does not report any false
negatives for call start or end events, some other events are
reported as call ends. The main goal for the PLSC is to avoid
launching CHOICEJACKING attacks while the user might no-
tice them. False negatives (not starting the attack although it
would be possible) at the identified prevalence are therefore
negligible for our application. We conclude that the CNN al-
lows determining when the user is in a phone call. For further
determining when the screen is turned off during the phone
call, a simple threshold comparator can be used, as observable
from the trace in Figure 6.

8 Discussion and Related Work

In this section, we elaborate attack scenarios and techniques,
discuss mitigations to CHOICEJACKING attacks and introduce
related literature.

8.1 Suitable Attack Scenarios
While some CHOICEJACKING attacks work on locked devices
or succeed within a matter of milliseconds, others require an
unlocked device and cause on-screen artifacts for a duration
of multiple seconds. These attacks are effective in any charg-
ing scenario where the unlocked phone screen is outside the
user’s focus of attention. A very illustrative example of such a
scenario can be found in phone calls, as discussed in Section 7.
Similarly suitable are scenarios where the user listens to a
music video while the device charges from a rented power
source (e.g., a hotel room’s USB wall socket). It is worth
noting that Youtube, which accounts for almost half of all
music streaming [11], does not allow locked-screen playback
for non-paying customers, and users are typically immersed
in other tasks while listening to music [11]. Mobile devices
are also commonly attached to rented chargers (power bank,
car, etc.) while using navigation apps, where the user’s at-
tention is focused on the surroundings rather than the screen.

These scenarios or further variations thereof are experienced
by most mobile device users on a daily basis.

8.2 Rationale for Multiple Attack Techniques
Our paper presents three attack techniques (T1 through T3),
which might appear redundant at first glance. However, pre-
senting several distinct attack techniques serves two important
missions. First, it expands the scope of CHOICEJACKING at-
tacks, both in terms of affected devices and platforms. Attack
technique T3 is relatively slow due to the BT pairing proce-
dure, but it succeeds on both iOS and Android. Attack tech-
nique T1 performs fastest, but it requires support for AOAP,
which can be missing in unlicensed AOSP-derived platforms.
Attack technique T2 exploits a race condition in a core OS
component, so it is likely to succeed even on heavily cus-
tomized Android variants that lack support for AOAP. Second,
presenting multiple techniques illustrates that the attacks are
rooted in a systemic lack of considering the security reper-
cussions of dual-role USB connectivity. It therefore intends
to provoke a more wholistic way of thinking about dual-role
USB and connectivity adversaries in mobile platforms.

8.3 Existing Mitigations
A number of mitigations have been suggested for JuiceJacking
attacks that may also be effective against CHOICEJACKING.
Additionally, mobile OSs already integrate some means to
limit the damage an attacker with control over the unlocked
device’s UI may do. All of these existing mitigations suffer
from limitations to their effectiveness in practical scenarios.

USB Data Blockers. A frequent suggestion for mitigating
malicious chargers are USB data blockers, which break USB
data lines. However, this mitigation assumes that the user is
aware of the potential for attacks, rendering it ineffective for
the average end user. Data blockers also interfere with modern
power negotiation schemes, thereby degrading charge speed.

User Authentication for Security-critical Functions.
Android and iOS require user authentication for security-
critical functionality such as enabling the USB debugging
interface. While this is an effective mitigation against
malicious chargers carrying out these operations, there are
flaws in Android’s implementation. When asking for user
authentication, the UI does not provide any clue about the
operation it is needed for. To the average user, the authenti-
cation screen might look like an innocuous screen unlock,
which they routinely authenticate to. A malicious charger can
exploit this weakness by triggering the authentication prompt
and simply waiting for the user to confirm it.

Lockdown Mode. Both Android (since Android 15) and
iOS (since iOS 16) include a Lockdown mode that can be ac-
tivated to thwart immediate danger in insecure environments.
On both OSs, enabling Lockdown mode shuts down USB
lines entirely while the lock screen is employed, so that any



kind of USB communication is disabled. However, USB pro-
tections are restricted to the lock screen. As soon as the device
is unlocked, USB connectivity is re-enabled. Most CHOICE-
JACKING attacks operate while the device is unlocked, so that
Lockdown mode is ineffective against them. Additionally,
this mitigation needs to be enabled manually, and, therefore,
requires the user’s awareness of potential attacks.

8.4 Suggested Mitigation
We propose user prompts for all kinds of USB access (host,
device, accessory mode) as a mitigation to both our novel
CHOICEJACKING and existing JuiceJacking attacks. CHOICE-
JACKING attacks exploit the fact that mobile OSs by default
trust USB and accessory input devices, although these can be
used for elevating the attacker’s privileges by interacting with
the UI to enable data connections. Since there may be many
ways to elevate privileges beyond the flaws we highlighted,
we argue that the default trust in USB input devices and ac-
cessories needs to be cut. This can be realized by introducing
prompts that ask for explicit user consent before an input de-
vice or accessory is allowed to interact with the system. Once
the USB Type-C Authentication Specification [46] has been
widely adopted, the user consent may be displayed for each
device upon first attachment and saved for subsequent con-
nections. A similar solution was proposed by Tian et al. [42]
and has been adopted in desktop OSs, e.g., in macOS [2].

8.5 Related Work
This section briefly surveys existing work on other USB-based
and general connectivity threats.

USB Threats. Prior works have discovered numerous
other threats related to USB connectivity on mobile devices.
After JuiceJacking and related attacks [16, 19] had been mit-
igated, several works exploited USB peripherals to extract
screen contents [23, 24] or inject voice commands [50]. Tian
et al. [43], Imtiaz et al. [13] and Pereira et al. [34] shed light
on the consequences of vendor customizations to mobile de-
vices’ USB interfaces. They uncover possibilities for flashing
firmware files or extracting user data through AT commands.
Recent works by Kim et al. [14, 15], Wu et al. [51] and Peng
et al. [33] present fuzzers for uncovering memory safety is-
sues in USB and USB PD stacks. In contrast to the design
flaws our work focuses on, all these works identify implemen-
tation issues such as memory safety issues and logic bugs. Su
et al. [41] and Dumitru et al. [8] exploit physical properties
of USB to observe or inject off-path communication. Finally,
Tischer et al. [45] and Meng et al. [24] present user studies
showing end users are unaware of USB-related threats.

Exploiting Mobile Device Connectivity. Design and im-
plementation weaknesses have recently been found in various
other communication interfaces of mobile devices. In 2023,
Marc Newlin [26] showed a family of attacks that allows

bypassing Bluetooth pairing authentication to inject input
events on Android phones. Vanhoef et al. [48, 49] and Schep-
ers et al. [36] have shown multiple attacks on WPA protocols
that allow intercepting and hijacking Wifi communication.
Cellular standards GSM [4] and UMTS [25] have long been
known to allow eavesdropping. Stute et al. [39, 40] proposed
multiple eavesdropping attacks on Apple’s proprietary wire-
less protocols. Fahl et al. [9], Oltrogge et al. [32] and others
reveal flaws in mobile apps’ use of TLS, allowing Man-In-
The-Middle attacks on server communication. None of these
interfaces allow arbitrary file access as possible over USB.

Power Side-Channels On Mobile Devices. Wired, wire-
less and standalone power side-channels (PSC) for mobile
devices are known in literature. Cronin et al. [7] exploit a
PSC attack that allows a malicious charger to infer unlock
pins. They detect button-accurate screen presses through the
effects of visual button tap feedback on the screen’s power
consumption. Yang et al. [52] and Wang et al. [50] show
that PSCs allow inferring a user’s browsing activity and loud-
speaker output. Genkin et al. [10] use the USB PSC to extract
ECDSA keys from mobile devices. Ni et al. [27] and Oberhu-
ber et al. [30] demonstrate that many of these PSCs can also
be exploited indirectly, from neighbouring devices in multi-
port chargers or from software. La Cour et al. [18] prove that
website fingerprinting is also possible through a PSC from a
wireless charger. Ni et al. [28] further improve on this, iden-
tifying the running app and entered keystrokes of a mobile
device charging from a wireless power bank.

9 Conclusion

Since user confirmations for USB data connections were intro-
duced on mobile platforms, their effectiveness against Juice-
Jacking attacks remained unchallenged. In this paper, we
observed that the design of this countermeasure is based on
the flawed assumption that a USB host cannot inject input
events. We presented a novel attack family, CHOICEJACKING,
and three concrete attack techniques that break this assump-
tion on Android and iOS. They allow bypassing JuiceJacking
mitigations and gaining file access or code execution through
a malicious charger. We constructed a prototype of a ma-
licious charger to evaluate CHOICEJACKING attacks on 11
recent mobile devices from 8 manufacturers. Our evaluation
showed that CHOICEJACKING attacks succeed across plat-
forms and vendors and can gain USB-based file access in
as little as 133 milliseconds in the best case. While most at-
tacks require an unlocked device, we demonstrated attacks
for two manufacturers that work while the screen is locked.
Finally, we presented a power line side-channel that can be
used for detecting suitable attack moments. Most affected
manufacturers have already acknowledged the threat posed
by CHOICEJACKING attacks. We are hopeful they will all in-
tegrate the countermeasures we suggest, which will lead to a
lasting improvement to USB security in the mobile landscape.
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